学位论文详细信息
Power distribution network modeling and microfluidic cooling for high-performance computing systems
Power distribution network;Power supply noise;Numerical modeling;Silicon interposer;Microfluidic cooling
Zheng, Li ; Bakir, Muhannad S. Electrical and Computer Engineering Naeemi, Azad Brand, Oliver Yalamanchili, Sudhakar Graham, Samuel ; Bakir, Muhannad S.
University:Georgia Institute of Technology
Department:Electrical and Computer Engineering
关键词: Power distribution network;    Power supply noise;    Numerical modeling;    Silicon interposer;    Microfluidic cooling;   
Others  :  https://smartech.gatech.edu/bitstream/1853/54449/1/ZHENG-DISSERTATION-2015.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

A silicon interposer platform with microfluidic cooling is proposed for high-performance computing systems. The key components and technologies for the proposed platform, including electrical and fluidic microbumps, microfluidic vias and heat sinks, and simultaneous flip-chip bonding of the electrical and fluidic microbumps, are developed and demonstrated. Fine-pitch electrical microbumps of 25 µm diameter and 50 µm pitch, fluidic vias of 100 µm diameter, and annular-shaped fluidic microbumps of 150 µm inner diameter and 210 µm outer diameter were fabricated and bonded. Electrical and fluidic tests were conducted to verify the bonding results. Moreover, the thermal and signaling benefits of the proposed platform were evaluated based on thermal measurements and simulations, and signaling simulations. Compared to the conventional air cooling, significant reductions in system temperature and thermal coupling are achieved with the proposed platform. Moreover, the signaling performance is improved due to the reduced temperature, especially for long interconnects on the silicon interposer.A numerical power distribution network (PDN) simulator is developed based on distributed circuit models for on-die power/ground grids, package- and board- level power/ground planes, and the finite difference method. The simulator enables power supply noise simulation, including IR-drop and simultaneous switching noise, for a full chip with multiple blocks of different power, decoupling capacitor, and power/ground pad densities. The distributed circuit model is further extended to include TSVs to enable simulations for 3D PDN. The integration of package- and board- level power/ground planes enables co-simulation of die-package-board PDN and exploration of new PDN configurations.

【 预 览 】
附件列表
Files Size Format View
Power distribution network modeling and microfluidic cooling for high-performance computing systems 20527KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:8次