French, Kristin Marie ; Davis, Michael E. Biomedical Engineering (Joint GT/Emory Department) Taylor, Robert San Martin, Alejandra Platt, Manu O. Barker, Thomas H. ; Davis, Michael E.
Heart failure, predominately caused by myocardial infarction (MI), is the leading cause of death in the United States. Currently the only treatment for heart failure is cardiac transplantation, but studies show that progenitor cell, biomaterial, or combined therapies have improved cardiac function post-MI. The endogenous environment of CPCs is drastically different from commonly used culture conditions. Further the endogenous environment changes with age and disease state. We evaluated the behavior of CPCs cultured on a naturally-derived, cardiac extracellular matrix (cECM) as compared to the standard culture coating collagen I, that also mimics fibrotic tissue. In this study, CPCs cultured on cECM had improved cell numbers and cardiomyogenic maturation. However, the microenvironmental cues responsible for stimulating CPC activation are largely unknown. During development, aging and disease the myocardium changes in matrix composition and stiffness exposing endogenous cells to a wide variety of stimuli. In a combinatorial study, we evaluated the effect of cyclic strain and extracellular matrix composition on CPC behavior. The response of CPCs to signals from the microenvironment is complex, with more matrix-dependency observed at lower strains. Alignment, cell division and paracrine signaling are extracellular matrix and strain dependent. Extracellular matrix conditions affect CPC maturation and calcium signaling. Mechanotransduction pathways, including focal adhesion kinase and extracellular signal-regulated kinase, are activated through adhesion and maintained under cyclic strain. Insights from this work will advance pragmatic cell therapy attempts to regenerate healthy myocardium post-MI.
【 预 览 】
附件列表
Files
Size
Format
View
Microenvironmental stimulation of cardiac progenitor cells