学位论文详细信息
A hardware-enabled certificate of authenticity system with intrinsically high entropy
Certificate of authenticity;Fingerprint;Signature;Entropy;Anti-counterfeiting;Authentication;Near field
Lakafosis, Vasileios ; Tentzeris, Manos Electrical and Computer Engineering Allen, Mark Durgin, Gregory Gebara, Edward Kirovski, Darko ; Tentzeris, Manos
University:Georgia Institute of Technology
Department:Electrical and Computer Engineering
关键词: Certificate of authenticity;    Fingerprint;    Signature;    Entropy;    Anti-counterfeiting;    Authentication;    Near field;   
Others  :  https://smartech.gatech.edu/bitstream/1853/51934/1/Lakafosis_Vasileios_201305_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

The objective of the proposed research is the design and fabrication of a novel stand-alone wireless robust system with enhanced hardware-enabled authentication and anti-counterfeiting capabilities. The system consists of two major components; the near-field certificates of authenticity (CoA), which serve as authenticity vouchers of the products they are attached to, and a microcontroller-enabled, low-power and low-cost reader. Small-sized passive physical three-dimensional structures that are composed of extremely cheap conductive and dielectric materials are shown to yield a unique and repeatable RF signature in a small portion of the frequency spectrum when brought in the reactive and radiating near-field regions of an array of miniature antennas. The multidimensional features of these CoAs, or in other words their signature or fingerprint, are cryptographically signed and digitally stored. The contactless signature validation procedure, in which an attempt to associate the near-field signature response of the physical CoA with the digitized signature, is carried out by the reader designed and fabricated. This low-cost reader operates autonomously and in an offline fashion. The feasibility and performance robustness of the system, in terms of accuracy, consistency and speed of capturing of the signatures, is rigorously assessed with a wide array of tests. Moreover, the entropy, or uncertainty, of the signatures generated by the system are empirically quantified and verified to achieve a virtually impossible false alarm. The aforementioned characteristics of the realized authentication system make it applicable to a vast array of physical objects that needs protection against counterfeiters.

【 预 览 】
附件列表
Files Size Format View
A hardware-enabled certificate of authenticity system with intrinsically high entropy 57490KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:13次