学位论文详细信息
Development and evaluation of a biocompatible electroactive sensor for continuous blood pressure measurement.
perivascular band;piezoelectric;tissue scaffold;0-3 piezo-composite
Scott D. Cambron
University:University of Louisville
Department:Mechanical Engineering
关键词: perivascular band;    piezoelectric;    tissue scaffold;    0-3 piezo-composite;   
Others  :  https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=3849&context=etd
美国|英语
来源: The Universite of Louisville's Institutional Repository
PDF
【 摘 要 】

Piezo-active composites have been implemented for sensing and transduction for decades. The 0-3 ceramic/polymer composite is one of the most common composite types used for sensing applications, owing to their tailorable properties of the two-phase composition, consisting of a three-dimensionally connected polymer/rubber matrix (inactive phase) with a dispersion of isolated piezo-ceramic particles (active phase). This thesis describes a method to develop novel biocompatible perivascular band comprised of a two-phase piezo-active composite to be fabricated using simple manufacturing processes. Biomaterials such as tissue scaffolds comprised of silk fibroin (SF) and chitosan (CS), and biocompatible soft rubbers will be implemented as the three dimensional inactive matrix, while a biocompatible piezo-ceramic nanoparticle such as Zinc Oxide (ZnO) will be pursued as the piezo-active ceramic particles. Two compositions were pursued, 1.) a biocompatible/biodegradable approach consisting of tissue scaffold (SFCS) and ZnO particle formulation and 2.) a biocompatible soft rubber and ZnO particle formulation. Test samples were fabricated using aforementioned formulations and tested on a custom built dynamic biaxial testing apparatus to correlate mechanical strain to piezoelectric output correlation.

【 预 览 】
附件列表
Files Size Format View
Development and evaluation of a biocompatible electroactive sensor for continuous blood pressure measurement. 15956KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:9次