学位论文详细信息
Quantum cohomology of a Hilbert scheme of a Hirzebruch surface
Gromov-Witten invariants;quantum product
Fu, Yong
关键词: Gromov-Witten invariants;    quantum product;   
Others  :  https://www.ideals.illinois.edu/bitstream/handle/2142/16874/Fu_Yong.pdf?sequence=1&isAllowed=y
美国|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

In this thesis, we first use the ${\mathbb C^*}^2$-action on the Hilbert scheme of two points on a Hirzebruch surface to compute all one-pointed and some two-pointed Gromov-Witten invariants via virtual localization, then making intensive use of the associativity law satisfied by quantum product, calculate other Gromov-Witten invariants sufficient for us to determine the structure of quantum cohomology ring of the Hilbert scheme. The novel point of this work is that we manage to avoid families of invariant curves with the freedom of choosing cycles to apply virtual localization method.

【 预 览 】
附件列表
Files Size Format View
Quantum cohomology of a Hilbert scheme of a Hirzebruch surface 538KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:11次