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Abstract

In this thesis, we first use a C∗2-action on the Hilbert scheme of two points on a Hirzebruch surface to

compute all one-pointed and some two-pointed Gromov-Witten invariants via virtual localization,

then making intensive use of the associativity law satisfied by quantum product, calculate other

Gromov-Witten invariants sufficient for us to determine the structure of quantum cohomology ring

of the Hilbert scheme. The novel point of this work is that we manage to avoid families of invariant

curves with the freedom of choosing cycles to apply the virtual localization method.
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Chapter 1

Introduction

In 1990’s, enumerative geometry experienced a big impetus from the work by physicists, in which

they calculated the number of rational curves of an arbitrary degree in a quintic threefold. Their

work employed the idea of mirror symmetry in string theory to relate the counting of curves to a

different problem in a mirror model in terms of physical arguments. To explain the phenomenon

and verify their results, mathematicians made great efforts to establish a rigorous theory, the so-

called Gromov-Witten theory. Now this subject is an established field and finds its applications

in many areas of mathematics, for example, enumerative geometry, the theory of singularities,

integrable systems to name just a few.

One of the task Gromov-Witten theory poses since its inception is how to compute Gromov-

Witten invariants. Generally, this is a very hard problem. Some techniques have been developed to

attack the problem, for example, degeneration method, finding mirror model to reduce the problem

to period calculations, etc. When there is a torus action on the target space, computations can be

relatively easily carried out with the so-called virtual localization [10], which is a modification of

the usual topological localization.

Gromov-Witten invariants can be wrapped up as the quantum product on the cohomology ring

of the space[7, 9]. This quantum product is associative and super-commutative, so that it makes

the cohomology ring into a new ring called quantum cohomology ring. This new ring structure is

a deformation of the cohomology ring of the space. If unraveled properly, the associativity of the

quantum product exhibits very strong relations among Gromov-Witten invariants. These relations

can be efficiently utilized for the computations of the invariants.

Since it was introduced, quantum cohomology has been computed for smooth toric varieties by

Batyrev [1], for Grassmannian manifolds by Bertram, Daskalopoulos and Wenthworth[4], for Fano

manifolds by Siebert and Tian[19], for flag varieties by Ciocan-Fontanine[5]. There are other cases
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where quantum cohomology is successfully decided. Recently, Okounkov and Pandharipande de-

termined the ring structure of the equivariant quantum cohomology of the Hilbert scheme of points

of a plane together with its relations to other areas of mathematics[15] and Pontoni established the

quantum cohomology of the Hilbert scheme of two points of P 1 × P 1 and studied its enumerative

applications[16].

In this thesis, we take the example of a Hilbert scheme of two points over a Hirzebruch surface

to compute its quantum cohomology ring. This work shows how the method of virtual localization

and the associativity of quantum product are effectively combined to produce new results. Since

Hirzebruch surfaces admit a C∗2-action, the Hilbert scheme inherits this torus action. With this

torus action, we succeed in computing many Gromov-Witten invariants of the Hilbert scheme

using the virtual localization formula. These invariants suffice to determine the quantum products

of the generators of the cohomology ring. In turn, the associativity of the quantum products of

these generators provide us equations for the remaining Gromov-Witten invariants. Solving these

equations, we obtain all two-pointed invariants. With these, the quantum ring structure is decided.

The layout of this thesis is as follows. In the second chapter, we first introduce the necessary

background materials for Gromov-Witten theory with emphasis on the construction of virtual fun-

damental classes, then present the computational technique in terms of virtual localization. In the

third chapter, we give an overview of the construction of Hilbert schemes on a smooth variety. In

particular, Hilbert schemes of points on a smooth surface are smooth. We study the cohomology of

the Hilbert schemes of two points over Hirzebruch surfaces, analyze the isolated or one-dimensional

connected components of the C∗2-action on the Hilbert schemes and determine the degrees of these

components to prepare for computations of Gromov-Witten invariants. In the fourth chapter, we

embark on the task of calculating Gromov-Witten invariants of one- or two-points. One type of

three-point invariants are also computed. We explain why this method of localization only suc-

ceeds partially. In the last chapter, we first compute the quantum products of generator elements

of the cohomology ring then, making heavy use of the associativity of the quantum product, es-

tablish equations for Gromov-Witten invariants, whose solutions provide necessary information to

determine the quantum ring structure.
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Chapter 2

Gromov-Witten Invariants and
Localization

Gromov-Witten theory originated in both symplectic geometry and algebraic geometry almost in

parallel at the early stage. It concerns with counting of maps from Riemann surfaces or algebraic

curves to symplectic manifolds or smooth algebraic varieties under incidence conditions. Like many

other mathematical problems in mathematics, legitimate counting comprises two steps: the first

is compactification of the moduli problem; the second is the study of intersection theory on the

moduli space. For Gromov-Witten theory, the first step is done by introduction of stable maps

proposed by Kontsevich. The second step requires more effort to solve. It is quite a common

phenomenon that moduli spaces have higher dimensions than expected. In the early stage of the

development of the theory, Gromov-Witten invariants were successfully established by Ruan and

Tian[17, 18] for the class of symplectic manifolds called weakly monotone symplectic manifolds,

which include Fano and Calabi-Yau manifolds, using the fundamental class of the moduli space

of stable maps. At about the same time, for homogeneous varieties and convex varieties, moduli

spaces of stable maps of genus 0 are also proved to support a well-behaved intersection theory[9],

so the Gromov-Witten theory for these classes of varieties can be firmly constructed.

Using the fundamental class of the moduli space to construct Gromov-Witten theory beyond

the restrictive class of spaces is problematic when the moduli space has higher dimension than

expected since it does not vary continuously when the space deforms. To construct invariants

which are independent of deformations of a target space, the usual practice in differential category

is to perturb some parameters to achieve the transversality conditions. But this method applied

to moduli space of stable maps is more complicated in case it is possible and any perturbation

in smooth category will force us to leave the algebraic realm. In mid-1990’s, several groups came

up with the solution, which is the construction of the virtual fundamental class. It is of the

expected dimension in the moduli space, playing the role of fundamental class and realizing the
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fundamental class of the moduli space in case various transversality conditions are satisfied. The

idea of the different constructions is using the excessive intersection theory to construct the class of

the expected dimension in the moduli space. In algebraic geometry, people make use of a natural

deformation-obstruction theory of the moduli problem to slice out the class via Fulton-McPherson’s

cone construction[8]. This is the approach we take in this work.

2.1 Moduli Spaces of Stable Maps

First we introduce the main objects of study.

Definition 2.1.1. [7, 9] Given a smooth variety X over complex numbers. A morphism f from a

prestable curve C with n-marked points {x1, · · · , xn} to X is called stable if the following conditions

are satisfied:

(1) every irreducible component of genus 0 which is contracted to one point in X by f must

contain at least three special points (which means marked or nodal points);

(2) every irreducible component of genus 1 which is contracted to one point in X by f must

contain at least one special point.

When X is a point, this agrees with the canonical notion of stable curves. An automorphism

of the stable map f is defined to be an automorphism φ : C → C such that fφ = f and φ(xi) = xi

for i = 1, · · · , n. It is easy to prove that the morphism f is stable if and only if it admits only

finitely many automorphisms.

Let β ∈ H2(X,Z) be a homological class of degree 2 and g, n be nonnegative integers. We define

the fibred category of stable maps over the category of schemes as follows: for any scheme S, the

objects of the fibred category over S, Mg,n(X,β)(S), is the set of all the diagrams

C

π
��

f // X

S,

xi

GG

where π : C → S is a flat family of prestable curves, xi, i = 1, · · · , n are sections of it, and

∀s ∈ S, fs : (Cs, x1s, · · · , xns)→ X is a stable map of genus g with n-marked points in the class β;
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for any two such diagrams, the morphisms between them are commutative diagrams

C1
φ //

π1

��

f1

##
C2

π2

��

f2 // X

S1

x
(1)
i

HH

ψ // S2,

x
(2)
i

HH

where the square is a fibred product.

Because stable maps only admit a finite number of automorphisms, this fibred category is a

Deligne-Mumford stack. We denote it asMg,n(X,β). It is called the moduli space of stable maps.

2.2 Virtual Fundamental Class

2.2.1 Cotangent Complex

The traditional deformation-obstruction theory assumes new appearance in the hands of Behrend

and Fantechi[3]. To present that, we need first to introduce the cotangent complex associated to a

morphism f : X → Y between two algebraic schemes or (Artin) stacks. The (relative) cotangent

complex of f or X over Y is an object L•X/Y in D−c (X), which means the derived category over X

of complexes bounded above with coherent cohomology.

Cotangent complexes have very nice properties[3, 12]:

(1) hi(L•X/Y ) = 0 for i > 0;

(2) h0(L•X/Y ) = ΩX/Y ;

(3) Morphisms f : X → Y and g : Y → Z induce a distinguished triangle f∗L•Y/Z → L•X/Z →

L•X/Y in D−c (X);

(4) Let

X ′ //

��

X

��
Y ′

j′ // Y

be a commutative square. Then there is a natural morphism

j′
∗
L•X/Y → L•X′/Y ′
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obtained by composing the morphisms

j′
∗
L•X/Y → L•X′/Y andL

•
X′/Y → L•X′/Y ′ .

If the square is Cartesian, then

hi(j′∗L•X/Y )→ hi(L•X′/Y ′)

is an isomorphism for i = 0 and a surjection for i = −1.

(5) If f : X → X ′ is a closed embedding with the ideal sheaf I and X ′ → Y is a smooth

morphism, then L•X/Y≥−1 is isomorphic to [I/I2 → f∗ΩX′/Y ], which are terms at −1 and 0.

Let X be a Deligne-Mumford stack and T → T be a square-zero closed embedding with the

ideal sheaf J . A morphism g : T → X induces canonical homomorphisms by property (3) above:

g∗L•X → L•T → L•
T/T

.

Since L•
T/T≥−1

= J [1] by (5), this homomorphism may be considered as an element ω(g) ∈

Ext1(g∗L•X , J). This class has the following properties:

• the morphism g : T → X extends to a morphism g : T → X if and only if ω(g) = 0;

• when ω(g) = 0, the set of such extensions forms a torsor under Ext0(g∗L•X , J).

2.2.2 Perfect Obstruction Theory

Definition 2.2.1. [3] A perfect obstruction theory for X is a morphism φ : E• → L•X in D•c (X)

from a two-term complex of vector bundles E• = [E−1 → E0] to the cotangent complex L•X of X

such that

(1) h0(φ) is an isomorphism,

(2) h−1(φ) is a surjection.

E• dualizes to E0 → E1, which gives rise to the quotient stack [E1/E0]. It is proved that for a

morphism φ : E• → L•X , the following statements are equivalent[3]:

(i) φ : E• → L•X is a perfect obstruction theory;
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(ii) φ∨ : NX → [E1/E0] is a closed embedding, where NX is the intrinsic normal sheaf of X;

(iii) If T → T is a square zero extension of schemes with the ideal sheaf J , and g : T → X is

a morphism, then φ∗ω(g) ∈ Ext1(g∗E•, J) vanishes if and only if g can be extended to T ; and if

φ∗ω(g) = 0, then all the extensions form a torsor under Ext0g∗E•, J) = Hom(g∗h0(E•), J).

Notice this last item (iii) is the bridge to the traditional deformation theory. Let C(E•) be the

fibred product in the following Cartesian diagram:

C(E•) //

��

E1

��
CX // [E1/E0],

where CX is the intrinsic normal cone of X, a closed substack in NX . C(E•) is a closed cone in the

vector bundle E1. Under the Gysin map 0∗ : A∗(E1)→ A∗(X), the image of the cycle class defined

by this cone is an element [X,E•] in ArkE0−rkE−1(X,Q). It is called the virtual fundamental class

of the obstruction theory.

It is almost a verbatim generalization to construct the virtual fundamental class from a relative

obstruction theory.

Definition 2.2.2. [3] A perfect relative obstruction theory for X → Y between two algebraic stacks

of relative Deligne-Mumford type is a morphism φ : E• → L•X/Y in D•c (X) from a two-term complex

of vector bundles E• = [E−1 → E0] to the relative cotangent complex L•X/Y , such that

(1) h0(φ) is an isomorphism,

(2) h−1(φ) is a surjection.

The fibred product of E1 and the relative intrinsic normal cone CX/Y of X → Y over the stack

[E1/E0] is a closed cone inside E1, which gives rise to the desired class in ArkE0−rkE−1(X,Q) when

X is Deligne-Mumford. The reason to come up with the relative version of a perfect obstruction

theory is that for some moduli problems the relative deformation and obstruction theory is easier

and more natural to understand and has a neater formulation. Gromov-Witten theory is such an

example.

Recall for fixed schemes C and X, the first-order deformations of a morphism f : C → X are

identified as H0(C, f∗TX), and the obstruction to deformations of f lives in H1(C, f∗TX). In the
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moduli space of stable maps, the domain curve C also varies, thus making the deformation and

obstruction spaces T i, i = 1, 2, very complicated to express. In fact, there is an exact sequence

relating the various deformation and obstruction theories [3, 10]:

0→ Ext0(ΩC(D),OC)→ H0(C, f∗TX)→ T 1 →

→ Ext1(ΩC(D),OC)→ H1(C, f∗TX)→ T 2 → 0,

in which D is the divisor of marked points on the domain curve C. A natural relative obstruction

theory can be constructed as follows[2]. Let Mg,n and C denote the Artin stack and the universal

family of prestable curves with arithmetic genus g and n-marked points and let Mor(C, X) be the

stack of morphisms from C to X. Then as a family version of the above picture, there exists a

natural perfect relative obstruction theory

φ : Rπ∗(F ∗TX)∨ −→ L•Mor(C,X)/Mg,n
,

where F : C ×Mg,n Mor(C, X) → X, is the universal morphism and π is the projection from the

product to the second factor. It can be proved that the moduli stack Mg,n(X,β) of stable maps

is an open substack of Mor(C, X), so it inherits a relative obstruction theory by restriction. The

virtual fundamental class [Mg,n(X,β)]vir defined by this obstruction theory is the class to build

Gromov-Witten invariants. By Riemann-Roch theorem, its degree is

χ(f∗TX) + dimMg,n

= dimH0(C, f∗TX)− dimH1(C, f∗TX) + dimMg,n

= c1(X)β + (1− g)dimX + 3g − 3 + n.

This number is denoted as virdimMg,n(X,β), called the virtual dimension of the moduli space.

In reality the virtual fundamental class is built via a global resolution of the obstruction theory

on Mg,n(X,β), which means a two-term complex of vector bundles [E−1 → E0] isomorphic to the

deformation-obstruction complex in the derived category.
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2.3 Definition of Gromov-Witten Invariants

Once we have described the construction of the virtual fundamental classes of the moduli spaces of

stable maps, Gromov-Witten invariants and the quantum product over H∗(X,Q) can be defined

as follows[9, 7]. Each marked point gives rise to an evaluation map evi : Mg,n(X,β) −→ X, i =

1, · · · , n.

Definition 2.3.1. Gromov-Witten invariants are

Ig,n,β < a1, · · · , an >=
∫

[Mg,n(X,β)]
vir
ev1
∗a1 ∪ · · · ∪ evn∗an,

for ai ∈ H∗(X,Q), i = 1, · · · , n.

When there is no danger of confusion, we also write Ig,n,β < a1, · · · , an > as < a1, · · · , an >g,n,β

or < a1, · · · , an >β. Note that Gromov-Witten invariants are equal to zero unless

n∑
i=1

deg(ai) = virdimMg,n(X,β).

The gravitational descendants can be defined analogously. Recall that π : Mg,n+1(X,β) →

Mg,n(X,β) can be identified with the universal curve over Mg,n(X,β). So, for any 1 ≤ i ≤ n, we

have sections si :Mg,n(X,β)→Mg,n+1(X,β) of π mapping the stable map {f : (C, x1, · · · , xn)→

X} to the point xi on C. We now define the i-th cotangent line to be the line bundle

Li := s∗iωπ,

on Mg,n(X,β), where ωπ denotes the relative dualizing sheaf of π.

Definition 2.3.2. For any non-negative integers m1, · · · ,mn, gravitational descendants are the

numbers

< τm1a1, · · · , τmnan >=
∫

[Mg,n(X,β)]
vir
ev1
∗a1 · c1(L1)m1 ∪ · · · ∪ evn∗an · c1(Ln)mn .
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Also, the gravitational descendants are equal to zero unless

n∑
i=1

(deg(ai) +mi) = virdimMg,n(X,β).

Given a basis T0 = 1, T1, · · · , Tm for H∗(X,Q) of homogeneous elements.

Definition 2.3.3. The quantum product of two elements a, b ∈ H∗(X,Q)

a ∗ b =
∑
i

∑
β∈H2(X,Z)

I0,3,β(a, b, Ti)qβT i,

where T 0, · · · , Tm form the dual basis of T0 = 1, T1, · · · , Tm in the sense that
∫
X T

i ∪ Tj = δij, and

qβ are formal variables satisfying qβ1qβ2 = qβ1+β2 for any β1, β2 ∈ H2(X,Z).

We impose the convention that the degree of qβ is
∫
β c1(TX) and the degrees of elements in

H∗(X,Q) are inherited. Then it can be proved[9, 7] that with this product, H∗(X,Q)⊗Q[[qβ : β ∈

H2(X,Z)]] is an associative and super-commutative ring, called the (small) quantum cohomology

ring of X. The associativity wraps up strong relations among Gromov-Witten invariants.

2.4 Equivariant Cohomology and K-Theory

In this section, we collect some basic facts about equivariant topology and localization formulas

which are useful for our purpose.

2.4.1 Equivariant Cohomology

For a Lie group G, we ask the question whether there exists a principal G-bundle EG→ BG, with

EG contractible. Such a bundle is universal in the topological setting: if E → B is any principal

G-bundle, then there is a map B → BG, unique up to homotopy, such that E is isomorphic to the

pullback of EG. It is called a classifying space of the group G. For any compact Lie group G, it is

well-known that its classifying space exists.

When the Lie group G acts on a topological space X, the equivariant cohomology is defined to be

H∗G(X) = H∗(X×GEG). Note that if G acts on X freely, then the projection X×EG→ X induces

a map X ×G EG→ X/G, with the contractible fibre EG. So in this case, H∗G(X) = H∗(X/G).
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A map between topological spaces X → Y induces a map X ×G EG→ Y ×G EG, so we have

a ring homomorphism H∗G(Y ) → H∗G(X). This means H∗G(·) is a contravariant functor from the

category of topological spaces to the category of rings. Since pt×G EG = BG,H∗G(pt) = H∗(BG).

This is regarded as the coefficient ring of the equivariant cohomology, denoted as H∗G, namely

H∗G(X) has a module structure over H∗G, induced by the map X → pt and hence X ×GEG→ BG.

It is well-known that for a torus T = (S1)×n, BT = (CP∞)×n, so H∗T = Z[t1, · · · , tn].

When V is an equivariant vector bundle over X,i.e. a G-vector bundle, V ×G EG is a vector

bundle over X ×G EG of the same rank. Any characteristic class c of X ×G EG is called an

equivariant characteristic class of X, denoted cG(V ). The candidates we have in mind here for the

characteristic class c are e.g. Euler class and Chern classes when V is a complex vector bundle,

etc. All the relations of characteristic classes for ordinary vector bundles carry over to equivariant

characteristic classes.

The equivariant integral over X is a well-defined H∗G-linear map:

∫
X

: H∗G(X)→ H∗G.

When a torus T acts on a manifold X, it is a fact that every connected component F is a

smooth submanifold. Its normal bundle is denoted by NF . This admits a T -action from the action

of T on X, which is trivial on the base. The celebrated Atiyah-Bott localization formula says:

∫
X
u =

∑
F

∫
F

u|F
eT (NF )

for any u ∈ RTH∗T (X), where RT is the field of fractions of H∗T . Note that when T = (S1)×n,RT =

Q(t1, · · · , tn).

Equivariant Chow groups A∗G(X) can also be defined in nice situations in algebraic geometry

when an algebraic group G acts on a projective variety or a Deligne-Mumford stack X and the

localization formula for torus actions also holds. When T = (C∗)×n, we still have AT∗ (pt) =

Z[t1, · · · , tn], so again its fraction field is RT = Q(t1, · · · , tn).

Let’s recall the relevant construction of topological Gysin maps in the usual and equivariant

situations.
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Suppose f : Y → X is a proper map between two smooth manifolds Y and X. The Gysin map

is a homomorphism of cohomology groups

f∗ : H i(Y )→ H i+d(X),

where d = dimX − dimY . It has the following properties:

(i)(Functoriality) For proper maps g : Z → Y and f : Y → X, fg is also proper and (fg)∗ =

f∗g∗.

(ii)(Projection formula) For a ∈ H∗(X) and b ∈ H∗(Y ), f∗(f∗a · b) = a · f∗b.

(iii)(Naturality) Given a fiber square of smooth manifolds and maps

Y ′
g′ //

f ′

��

Y

f
��

X ′
g // X,

with f and f ′ proper, and dimY − dimX = dimY ′ − dimX ′, then

g∗f∗ = (f ′)∗(g′)∗.

(iv)(Embedding) If f : Y ↪→ X is a closed embedding of codimension d with the normal bundle

N , then the composition f∗f∗ : H i(Y )→ H i+d(Y ) is multiplication by the Euler class e(N).

(v)If g : Y ′ → X is a map, and g(Y ′) ∩ f(Y ) = Ø, then g∗f∗ = 0.

When a Lie group G acts on Y and X and f is an equivariant proper map from Y to X,

there is an equivariant version of Gysin maps, still denoted as f∗ : H i
G(Y )→ H i+d

G (X). It satisfies

the similar properties as listed above, but in the property(iv), e(N) needs to be replaced by the

equivariant Euler class eG(N) of the normal bundle. In particular, from property (iv), we have a

very useful

Corollary 2.4.1. If f : Y ↪→ X is a closed equivariant embedding of codimension d with normal

bundle N and i : p ↪→ Y is a fixed point, then i∗f∗(Y ) = eG(N |p), which can be written as the

product of weights of the restriction of N to p.
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2.4.2 Equivariant K-Theory

We also need to recall the definition of equivariant K-theory. Let G act on a compact space X.

The set of isomorphism classes of G-vector bundles on X forms an abelian semigroup under direct

sum. Its abelianization is called equivariant K-group, denoted as KG(X): its elements are formal

differences E0−E1 of G-vector bundles on X, modulo the equivalence relation E0−E1 = E′0−E′1

if and only if E0 ⊕ E′1 ⊕ F ∼= E′0 ⊕ E1 ⊕ F equivariantly for a G-bundle F on X.

The tensor product of G-vector bundles induces a structure of commutative ring in KG(X).

Because a G-equivariant map between two G-spaces pulls back a G-vector bundle to a G-vector

bundle, KG is a contravariant functor from compact G-spaces to commutative rings. If G = 1, we

write K(X) for KG(X). This is the ordinary K-theory.

If X is a point, then KG(X) is denoted as R(G), the representation ring or the character ring

of G. When G is a torus T , R(T ) = Z[t1, · · · , tn]. For any G-space X, KG(X) is a module over

R(G), induced from the map X → pt.

Taking Chern character induces an isomorphism

ch : K(X)⊗Q→ H∗(X,Q)

between rings; also taking equivariant Chern character induces a homomorphism

chG : KG(X)⊗Q→ H∗G(X,Q)

between rings. But chG is not necessarily an isomorphism.

2.4.3 Virtual Localization

One of the few computation tools for Gromov-Witten invariants is the virtual localization technique

when the variety X admits a group action.

Let’s get back to the general situation, where a torus group T acts on X and on the perfect

obstruction theory E• equivariantly. Let Xi, i ∈ I be a connected component of the torus action

on X. It is a fact that every coherent sheaf F on Xi decomposes into the direct sum of the fixed

part Ff and the moving part Fm under the group action. It can be proved that the fixed part
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E•,fi of the restriction of E• to the component induces a perfect obstruction theory for Xi, which

in turn produces the virtual fundamental class [Xi, E
•,f
i ] or [Xi]vir. Let Nvir

i = Em0 − Em1 be the

virtual bundle of the moving part of the restriction to Xi of E•, the dual to E•, called the virtual

normal bundle. Then the virtual localization formula is[7]

∫
[X]vir

u =
∑
i∈I

∫
[Xi]vir

u|Xi
eT (Nvir

i )
,

for any u ∈ RTAT∗ (X), where eT (Nvir
i ) = eT (Em0 − Em1 ) =

eT (Em0 )
eT (Em1 )

is the equivariant Euler class

of Nvir
i on Xi. When u ∈ A∗(X) has the same degree as [X]vir and invariant under the T -action,

we take an equivariant lifting uT of u in AT∗ (X). Since

∫
[X]vir

u =
∫

[Xi]vir
uT ∈ Q,

this provides a way to compute the ordinary integrals over the virtual fundamental class via the

equivariant integrals over the connected components of fixed points using localization formula.

When a torus T acts on a smooth projective variety X, the moduli space of stable maps

Mg,n(X,β) automatically inherits a torus action by composing with the action on X. In some

cases, the connected components can be identified and recorded by graphs. With a resolution E•

of the canonical obstruction theory, the tangent space T 1 and the obstruction space T 2 are built

into the exact sequence

0→ T 1 → E0 → E1 → T 2 → 0,

and T 1 and T 2 are related to other terms as in the exact sequence in §2.2. This provides us a

way to calculate the equivariant Euler class of the virtual normal bundle Nvir
i on each connected

component of the fixed loci in Mg,n(X,β) and hence Gromov-Witten invariants of X in terms of

the virtual localization[10].
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Chapter 3

Hilbert Schemes of Points

Hilbert schemes parametrize the subschemes in a given scheme with some fixed numerical data.

They are rare and precious examples in which the moduli problems are finely represented. Because

of this, they work as the ground for many other moduli problems. We are here interested in

the Hilbert schemes of two points when the given scheme is an algebraic surface, especially a

Hirzebruch surface. We want to make use of a torus action on the Hirzebruch surface to compute

the Gromov-Witten invariants of the Hilbert scheme.

3.1 Definition of Hilbert Schemes

Let X be a projective scheme over C and O(1) be an ample line bundle over X. Hilbert schemes

describe the moduli of the closed subschemes in X with some numerical invariants.

Given a polynomial P (n), we consider the contravariant functor

HilbP : (schemes/C)→ (sets),

where, for any scheme S over C,

HilbP (S) = {Y ⊂ X × S a closed subscheme : Y → S is flat

and for any s ∈ S, Ys has Hilbert polynomial P (n)}.

Here the Hilbert polynomial of Ys is that of its structure sheaf. Let’s recall that the Hilbert
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polynomial of a coherent sheaf F on X is defined by

P (n) = χ(F ⊗O(n)),

for any non-negative integer n. Since Y → S is flat, the Hilbert polynomial of Ys is independent of

s. So it’s reasonable to impose the condition that each fiber have the given Hilbert polynomial. A

celebrated theorem of Grothendieck is

Theorem 3.1.1. The functor HilbP is represented by a projective scheme HilbP /C.

This means that there exists a closed subscheme U ⊂ X ×HilbP , for which U → HilbP is flat

and every fiber has the Hilbert polynomial P (n), such that any family Y → S is induced from a

unique morphism S → HilbP .

Let P be the constant polynomial n. We denote by X [n] the corresponding Hilbert scheme and

call it the Hilbert scheme of n-points. As the degree of the Hilbert polynomial is the dimension of

the subschemes, X [n] parametrizes 0-dimensional subschemes of length n in X, i.e.

dimH0(Z,OZ) =
∑

p∈supp(Z)

dim(OZ,p) = n.

One type of points in this Hilbert scheme X [n] are all the pairwise distinct n-points in X. They

form a dense open subset in X [n]. Usually, Hilbert schemes are singular, non-reduced, reducible

and even not connected. But when X is a smooth algebraic surface, a result of Fogarty says X [n]

is also smooth and irreducible of dimension 2n.

For a smooth surface X, its n-fold symmetric product X(n) is defined to be

n︷ ︸︸ ︷
X × · · · ×X /Sn,

where Sn is the symmetric group acting as shuffling the tuples. It is an orbifold. There is a natural

morphism

π : X [n] −→ X(n),

16



defined by

π(Z) =
∑

p∈supp(Z)

dim(OZ,p)p,

for any Z ∈ X [n]. This map can be regarded as the resolution of singularities of X(n).

3.2 Cohomology of Hilbert Schemes of Two Points of Surfaces

It is a fact that when a torus acts on a smooth projective variety with finitely many fixed points,

its Chow groups and homology groups of the same degrees agree and these groups don’t admit any

torsion. As we’ll see this is the case for a Hirzebruch surface Fa, a ≥ 1 and for F [2]
a , the Hilbert

scheme of two points on Fa. For this reason, when we study their cohomology groups, we can

work out their homology groups by Poincare duality whenever this is more convenient. In order to

determine the homology groups of the Hilbert scheme, let’s recall the blowup construction of the

Hilbert scheme of two points on a general algebraic surface S.

Let ∆ : S → S × S be the diagonal morphism. The blowup Bl∆(S × S) of S × S along the

diagonal ∆, denoted as S̃ × S, is a four-dimensional smooth variety with the exceptional divisor

P (TS), denoted as S̃, the projectivization of the tangent bundle of S. Z2 acts on S × S by

exchanging the order of points, which fixes the diagonal. It automatically induces an involution on

the blowup, which fixes the exceptional divisor. This in turn induces an involution on the homology

groups. The Hilbert scheme S[2] is the quotient of the blowup under the involution. We go back

and forth between the two points of view for the Hilbert scheme when necessary.

Let’s use φ : S̃ × S → S[2] to denote this quotient. By Example 1.7.6 in [8], there is a canonical

isomorphism

φ∗ : A∗(S[2])→ A∗(S̃ × S)Z2 ,

where for a subvariety V in S[2],

φ∗[V ] =
∑

eW [W ],

the sum over all irreducible components of φ−1(V ), and eW = #{g ∈ Z2 : g|W = idW }, and where
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A∗(S̃ × S)Z2 is the fixed subgroup of A∗(S̃ × S) under the involution. We have identities

φ∗φ∗ = 2id, φ∗φ
∗ = 2id.

The intersection product operations in these two rings are related in the following formula. For

any x, y ∈ A∗(S[2]), we have (see Example 8.3.12 in [8])

x · y =
1
2
φ∗(φ∗x · φ∗y).

The above blowup construction can be shown in the fibre square

S̃
j−−−−→ S̃ × S

g

y yf
S

∆−−−−→ S × S,

where j is the inclusion of the exceptional divisor, and f, g are the projections.

Let T be the tautological bundle O(−1) on S̃, which is also the normal bundle of the exceptional

divisor in S̃ × S, and E = g∗(TS)/T be the quotient bundle on S̃, in other words, we have the

exact sequence

0→ T → g∗(TS)→ E → 0.

Because f is a l.c.i. morphism of relative dimension zero, the Gysin map f∗ : A∗(S × S) →

A∗(S̃ × S) is well-defined. The following proposition is copied from Proposition 6.7 and Example

8.3.9 in [8].

Proposition 3.2.1. There are split exact sequences

0→ Ak(S) α−−−−→ Ak(S̃)
⊕
Ak(S × S)

β−−−−→ Ak(S̃ × S)→ 0,

with α(x) = (c1(E) ∩ g∗x,−∆∗x) and β(x̃, y) = j∗x̃ + f∗y. A left inverse for α is given by

(x̃, y) 7→ g∗(x̃). The ring structure of A∗(S̃ × S) is determined by the following rules:

(i) f∗y · f∗y′ = f∗(y · y′);
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(ii) j∗x̃ · j∗x̃′ = j∗(c1(T ) · x̃ · x̃′);

(iii) f∗y · j∗x̃ = j∗((g∗∆∗y) · x̃).

Taking the involution into account, we have split exact sequences

0→ Ak(S) α−−−−→ Ak(S̃)
⊕
Ak(S × S)Z2

β−−−−→ Ak(S̃ × S)Z2 → 0,

thus deciding the homology groups of the Hilbert scheme S[2]. Obviously, the homology group

Ak(S[2]) consists of two parts, one from Ak(S̃), one from Ak(S × S)Z2 , identified under α.

The homology classes in Ak(S̃) are sent in Ak(S̃ × S)Z2 by the embedding j of the exceptional

divisor and the groups themselves are presented in terms of those of the base (see e.g. P.606

Griffiths&Harris: Principles of Algebraic Geometry).

Proposition 3.2.2. Let ζ = c1(T ). Then

A∗(S̃) = A∗(S)[ζ]/(ζ2 − c1(TS)ζ + c2(TS)),

as graded rings.

The relation between the Gysin map f∗ and the proper transform is described in the following

proposition, which is modified from Theorem 6.7 in [8].

Proposition 3.2.3. Let V be a k-dimensional subvariety in S×S, and let Ṽ be the proper transform

of V in S̃ × S. Then

f∗[V ] = [Ṽ ] + j∗{c(E) ∩ g∗s(V
⋂

∆, V )}k

in Ak(S̃ × S), where {·}k means taking the degree k part of the class.

Corollary 3.2.4. (Corollary 6.7.2[8]) With the assumption of the above proposition, when dimV
⋂

∆ ≤

k − 2,

f∗[V ] = [Ṽ ].
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In order to apply the results above to our case of Hirzebruch surface Fa, we need to review the

construction of its homology groups or Chow groups[11].

Let

π : Fa = Proj(S•F)→ P1

be the projection, where F = OP1 ⊕OP1(−a). The surjective projection F → OP1(−a) determines

a section of π. We call the image of this section the ∞-section, denoted as S∞. It is isomorphic to

P1 and forms a divisor in Fa. Note that over Fa, the twisting sheaf OFa(1) ∼= L(S∞). We call (0, 1)

the 0-point and (1, 0) the ∞-point in P1, and call the image points of the 0-point and the ∞-point

under the section A and C respectively. The projection F → OP1 → 0 also determines a section

of π, which is named as the 0-section. We refer to its image as S0. We call the image points of the

0-point and the ∞-point in P1 under this section B and D respectively. We denote the fibre over

the 0-point by f0 and the fibre over the ∞-point by f∞. These special divisors and their geometric

configuration can be illustrated in the following picture:

Figure 3.1: Special Divisors in Fa

A C

DB

ss

s s

S∞

S0

f0 f∞

It is a fact that any two fibres of π are numerically equivalent. We also have the numerical
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equivalence relation

S0 ≡ S∞ + af.

Then the homology groups of Fa are given as follows:

A0(Fa) = Zpt;

A1(Fa) = ZS ⊕ Zf ;

A2(Fa) = ZFa,

where pt, here and in the sequel when not designated, is any one of the fixed or arbitrary points

on the relevant spaces, which assumes transversality as much as possible when we do intersection

theory, S means either one of S0 and S∞, and f means either one of f0 and f∞. We keep the freedom

as to choose which one of them when needed. The various intersection products are described as

follows:

S2
0 = a, S2

∞ = −a, S0 · S∞ = 0, f2 = 0, S · f = 1.

Also, the canonical divisor K ≡ −2S∞ − (2 + a)f , with K2 = 8. Notice that c1(TFa) = −K =

2S∞ + (2 + a)f = 2S0 + (2 − a)f . Note that these cycles are smooth submanifolds. This nice

property gives rise to smoothness of representative cycles for the Hilbert schemes, which offers us

much convenience later in our computations.

When we think about applying Proposition 3.2.1 to Fa, there are two different types of homology

classes. The classes in the first type are just the pullbacks under g of the homology classes of Fa,

from which we obtain P (TFa|pt), P (TFa|S), P (TFa|f ), and F̃a itself, where here and in the following

when we don’t designate subscript for S or f , we mean either one of the choices. We need to take

the cap products of ζ with the classes in the first type to get the classes in the second type.

Lemma 3.2.5. There are relations among the various cycles:

(1)P (TFa|S0) = P (TFa|S∞) + aP (TFa|f );

(2)ζ ∩ P (TFa|S∞) = (2− a)P (TFa|pt)− c1(E) ∩ P (TFa|S∞);
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(3)ζ ∩ P (TFa|S0) = (2 + a)P (TFa|pt)− c1(E) ∩ P (TFa|S0);

(4)ζ ∩ P (TFa|f ) = 2P (TFa|pt)− c1(E) ∩ P (TFa|f );

(5)ζ ∩ P (TFa) = 2P (TFa|S∞) + (2 + a)P (TFa|f )− c1(E) ∩ P (TFa).

Proof. (1) is easy because S0 ≡ S∞ + af . We get the relation by pulling this identity to S̃ via g.

Since

c1(g∗(TFa)) = c1(T ) + c1(E) = ζ + c1(E),

we have

ζ ∩ P (TFa|S∞) = c1(g∗(TFa)) ∩ P (TFa|S∞)− c1(E) ∩ P (TFa|S∞).

On the right-hand side, c1(E)∩P (TFa|S∞) is identified with ∆∗S∞ in A1(Fa×Fa), so we just need

to figure out the first term. Now since

c1(g∗(TFa)) = g∗c1(TFa),

and

c1(TFa) = −K ≡ 2S∞ + (2 + a)f ≡ 2S0 + (2− a)f,

we have

c1(g∗(TFa)) ∩ P (TFa|S∞) = g∗(2S0 + (2− a)f) ∩ P (TFa|S∞)

= (2− a)P (TFa|f ) ∩ P (TFa|S∞)

= (2− a)P (TFa|pt),

because the intersection P (TFa|f ) ∩ P (TFa|S∞) is proper. So

ζ ∩ P (TFa|S∞) = (2− a)P (TFa|pt)− c1(E) ∩ P (TFa|S∞).
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This is (2). For (4), in the same way,

ζ ∩ P (TFa|f ) = c1(g∗(TFa)) ∩ P (TFa|f )− c1(E) ∩ P (TFa|f )

= g∗(2S0 + (2 + a)f0) ∩ P (TFa|f∞)− c1(E) ∩ P (TFa|f )

= 2P (TFa|S∞) ∩ P (TFa|f∞)− c1(E) ∩ P (TFa|f )

= 2P (TFa|pt)− c1(E) ∩ P (TFa|f ).

If we plug (1) in (2) and make use of (4), we get (3). Finally,

ζ ∩ P (TFa) = c1(g∗(TFa)) ∩ P (TFa)− c1(E) ∩ P (TFa)

= g∗(2S∞ + (2 + a)f0) ∩ P (TFa)− c1(E) ∩ P (TFa)

= (2P (TFa|S∞) + (2 + a)P (TFa|f )) ∩ P (TFa)− c1(E) ∩ P (TFa)

= 2P (TFa|S∞) + (2 + a)P (TFa|f )− c1(E) ∩ P (TFa).

From this lemma, we can find a new set of generators for the homology groups as follows:

A0(F̃a) = Zpt;

A1(F̃a) = ZP (TFa|pt)⊕ Zc1(E) ∩ P (TFa|S∞)⊕ Zc1(E) ∩ P (TFa|f );

A2(F̃a) = ZP (TFa|S)⊕ ZP (TFa|f )⊕ Zc1(E) ∩ P (TFa);

A3(F̃a) = ZF̃a.

The relation ζ2 = c1(TFa)ζ−c2(TFa) can be modified to produce a relation for the new generators.

First, c2(TFa) = 4. On the other hand,

c1(TFa)ζ = (2S∞ + (2 + a)f)ζ

= 2ζ ∩ P (TFa|S∞) + (2 + a)ζ ∩ P (TFa|f )

= 8P (TFa|pt)− 2c1(E) ∩ P (TFa|S∞)− (2 + a)c1(E) ∩ P (TFa|f ),
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so,

ζ2 = 4P (TFa|pt)− 2c1(E) ∩ P (TFa|S∞)− (2 + a)c1(E) ∩ P (TFa|f ).

Applying ζ = c1(g∗(TFa))− c1(E), we get

ζ2 = (c1(g∗(TFa))2 − 2c1(E)c1(g∗(TFa)) + (c1(E))2

= K2P (TFa|pt)− 2c1(E) ∩ g∗(2S∞ + (2 + a)f) + (c1(E))2

= 8P (TFa|pt)− 4c1(E) ∩ P (TFa|S∞)− (4 + 2a)c1(E) ∩ P (TFa|f ) + (c1(E))2,

where c1(E) can be treated as a homological cycle by duality, or in other words, c1(E) is identified

with c1(E) ∩ P (TFa). So comparing the above two identities for ζ2, we obtain relation

(c1(E) ∩ P (TFa))2 = −4P (TFa|pt) + 2c1(E) ∩ P (TFa|S∞)

+ (2 + a)c1(E) ∩ P (TFa|f ).

Once the generators of homology groups of Fa have been chosen, we can take a set of generators

for Ak(Fa × Fa)Z2 as follows:

A0(Fa × Fa)Z2 = Zpt;

A1(Fa × Fa)Z2 = Z(S∞ × pt+ pt× S∞)⊕ Z(f × pt+ pt× f);

A2(Fa × Fa)Z2 = Z(S0 × S∞ + S∞ × S0)⊕ Z(f0 × f∞ + f∞ × f0)

⊕ Z(S∞ × f + f × S∞)⊕ Z(Fa × pt+ pt× Fa);

A3(Fa × Fa)Z2 = Z(Fa × S∞ + S∞ × Fa)⊕ Z(Fa × f + f × Fa);

A4(Fa × Fa)Z2 = Z(Fa × Fa).

Combining the analysis for the homology groups of two part A∗(F̃a) and A∗(Fa × Fa)Z2 , we

can find a set of generators for A∗(F̃a × Fa)Z2 . Under the identification of α in Proposition 3.2.1,

c1(E) ∩ P (TFa|S∞) is identified with ∆∗(S∞), c1(E) ∩ P (TFa|f ) is identified with ∆∗(f), and
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c1(E) ∩ P (TFa) is identified with ∆∗(Fa). But in Ak(Fa × Fa)Z2 ,

∆∗(S∞) = S∞ × pt+ pt× S∞,

∆∗(f) = f × pt+ pt× f,

∆∗(Fa) = Fa × pt+ pt× Fa + S∞ × f + f × S∞ +
a

2
(f0 × f∞ + f∞ × f0),

so we can take the generators in A∗(F̃a × Fa)Z2 either from A∗(F̃a) via j∗ or from A∗(Fa × Fa)Z2

via f∗:

α0 = 2pt, ∀pt ∈ F̃a;

α1 = 2P (TFa|pt), α2 = S∞ × pt+ pt× S∞, α3 = f × pt+ pt× f ;

α4 = 2P (TFa|S∞), α5 = 2P (TFa|f ), α6 = S0 × S∞ + S∞ × S0,

α7 = f0 × f∞ + f∞ × f0, α8 = S∞ × f + f × S∞, α9 = Fa × pt+ pt× Fa;

α10 = 2P (TFa), α11 = Fa × S∞ + S∞ × Fa, α12 = Fa × f + f × Fa;

α13 = Fa × Fa,

where we omit the symbols j∗ and f∗. Define βi = (φ∗)−1αi = 1
2φ∗αi for each i. Then the homology

groups of the Hilbert scheme F [2]
a can be expressed in terms of these generators:

A0(F [2]
a ) = Zβ0;

A1(F [2]
a ) = Zβ1 ⊕ Zβ2 ⊕ Zβ3;

A2(F [2]
a ) = Zβ4 ⊕ Zβ5 ⊕ Zβ6 ⊕ Zβ7 ⊕ Zβ8 ⊕ Zβ9;

A3(F [2]
a ) = Zβ10 ⊕ Zβ11 ⊕ Zβ12;

A4(F [2]
a ) = Zβ13.

Notice that under the Gysin map f∗, α2, α3, α6, α7, α8 and α9 are mapped to their proper

transformations by Corollary 3.2.4, so when followed by the inverse of φ∗ are sent to smooth

submanifolds in F [2]
a . This means β2, β3, β6, β7, β8 and β9 are smooth cycles in F [2]

a . Of course, the

cycles β1, β4 and β5 are obviously smooth in F [2]
a . As we said this is a nice property of these cycles.

We’ll refer these representatives of the classes as standard ones when we use them in computations

in Chapter 4 although we have some ambiguities in that some of them have uncertain f ’s and pt’s,
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but we will designate them when necessary.

The intersection products of the cycles of complementary dimensions are listed in the following

tables:

β1 β2 β3

β10 −2 0 0

β11 0 −a 1

β12 0 1 0

β4 β5 β6 β7 β8 β9

β4 2a −2 0 0 0 0

β5 −2 0 0 0 0 0

β6 0 0 −a2 2 −a 0

β7 0 0 2 0 0 0

β8 0 0 −a 0 1 0

β9 0 0 0 0 0 1
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Other intersection products are computed as follows:

β4 · β10 =
1
2
φ∗(α4 · α10) =

1
2
φ∗(ζ ∩ 4P (TFa|S∞))

= 2φ∗((2− a)P (TFa|pt)− c1(E) ∩ P (TFa|S∞))

= 2φ∗((2− a)P (TFa|pt)−∆∗S∞)

= 2(2− a)β1 − 4β2,

β4 · β11 =
1
2
φ∗(α4 · α11)

= φ∗(P (TFa|S∞) · Fa × S∞ + P (TFa|S∞) · S∞ × Fa)

= φ∗(−2aP (TFa|pt)) = −2aβ1,

β4 · β12 =
1
2
φ∗(α4 · α12)

= φ∗(P (TFa|S∞) · Fa × f + P (TFa|S∞) · f × Fa)

= φ∗(2P (TFa|pt)) = 2β1.

Similarly,

β5 · β10 = 4β1 − 4β3, β5 · β11 = 2β1,

β5 · β12 = 0, β6 · β10 = 0,

β6 · β11 = −aβ2 − a2β3, β6 · β12 = 2β2 + aβ3,

β7 · β10 = 0, β7 · β11 = 2β3,

β7 · β12 = 0, β8 · β10 = 2β1,

β8 · β11 = β2 − aβ3, β8 · β12 = β3,

β9 · β10 = 2β1, β9 · β11 = β2,

β9 · β12 = β3.
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Also,

β2
10 = 4β4 + 2(2 + a)β5 − 2aβ7 − 4β8 − 4β9,

β10 · β11 = 2β4, β10 · β12 = 2β5,

β2
11 = β6 − aβ8 − aβ9, β11 · β12 = β8 + β9,

β2
12 = β7.

From the last six lines of identities, we find that the Chow ring of F [2] is generated by

β10, β11, β12, β9 and the other basis elements are expressed as

β1 =
1
2
β9β10, β2 = β9β11, β3 = β9β12,

β4 =
1
2
β10β11, β5 =

1
2
β10β12, β6 = β2

11 + β11β12,

β7 = β2
12, β8 = β11β12 − β9.

Plugging these expressions in the remaining identities including the above two product tables, we

get various equations on the generators. By ruling out the redundant ones, we conclude the Chow

ring is presented by the following relations:

β9β11β12 = β2
9 ,

β10β
2
12 = 0,

β3
12 = 0,

β11β
2
12 − 2β9β12 = 0,

β10β
2
11 + 2aβ9β10 = 0,

β10β11β12 − 2β9β10 = 0,

β2
11β12 − 2β9β11 + aβ9β12 = 0,

β3
11 + 3aβ9β11 = 0,

β2
10 − 2β10β11 − (2 + a)β10β12 + 2aβ2

12 + 4β11β12 = 0.
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3.3 Torus Action on Hilbert Schemes

As a toric variety, Fa can be constructed from the fan in the following picture(See Fulton, Intro-

duction to toric varieties):

s

6

(0, 1)

- (1, 0)

σ1

σ3

σ4

?

σ2

(0,−1)

A
A

A
A

A
A

A
A

A
AK

(−1, a)

The four affine varieties are

Uσ1 = SpecC[x, y], Uσ2 = SpecC[x, y−1],

Uσ3 = SpecC[x−1, x−ay−1], Uσ4 = SpecC[x−1, xay].

Note that the origins of the four affine planes correspond to the points we named A,B,D and C

respectively, in Figure 3.1. Now C∗2 acts on Fa by acting on the variables in the following way:

(λ, µ)(x, y) = (λ−1x, µ−1y),

(λ, µ)(x, y−1) = (λ−1x, µy−1),

(λ, µ)(x−1, x−ay−1) = (λx−1, λaµx−ay−1),

(λ, µ)(x−1, xay) = (λx−1, λ−aµ−1xay).
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Dually, C∗2 acts on each coordinate piece with opposite weights. This action in turn induces an

action on the Hilbert scheme F
[2]
a . A moment of thinking shows that the representative cycles

β1, · · · , β13 are invariant under the torus action.

It is easy to see that around each fixed point in Fa, there are two fixed points, one corresponding

to the direction of the ∞-section or the 0-section, one corresponding to the direction of the fibre

through it. We denote them using subscripts ”1” or ”2”, respectively. So we have eight of them,

A1, A2, B1, B2, C1, C2, D1, D2. For the computational purpose, we need to find the weights of the

torus action at these fixed points.

We start with A1. In the first affine plane, A1 is represented by the ideal (x2, y). The full

deformation of (x2, y) in F
[2]
a is described by (x2 + ε1x + ε2, y + ε3x + ε4). So there are four

curves passing through A1 given by families of ideals in C[x, y]: I1(ε) = (x2 + εx, y), I2(ε) =

(x2 + ε, y), I3(ε) = (x2, y + εx), and I4(ε) = (x2, y + ε).

Lemma 3.3.1. The weights of the C∗2-action on the tangent space of F [2]
a at A1 are λ, 2λ, µ− λ,

and µ.

Proof. We have

(λ, µ)I1(ε) = (λ, µ)(x2 + εx, y) = (λ−2x2 + ελ−1x, µ−1y)

= (x2 + ελx, y) = I1(ελ).

So the weight on the tangent direction of this curve is λ.

Similarly,

(λ, µ)I2(ε) = (λ−2x2 + ε, µ−1y) = I2(ελ2),

(λ, µ)I3(ε) = (λ−2x2, µ−1y + ελ−1x) = I3(ελ−1µ),

(λ, µ)I4(ε) = (λ−2x2, µ−1y + ε) = I4(εµ).

So the weights on the tangent directions of these curves are 2λ, µ− λ, µ.

In the same vein, there are four curves passing through A2, which is represented by the ideal

(x, y2). They are families of ideals I1(ε) = (x+ ε, y2), I2(ε) = (x, y2 + εy), I3(ε) = (x+ εy, y2), and
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I4(ε) = (x, y2 + ε).

Lemma 3.3.2. The weights of the C∗2-action on the tangent space of F [2]
a at A2 are λ, µ, λ − µ,

and 2µ.

Proof. Similar to that of Lemma 1.

Four curves traverse B1 : I1(ε) = (x2 + ε, y−1), I2(ε) = (x2 + εx, y−1), I3(ε) = (x2, y−1 + ε), and

I4(ε) = (x2, y−1 + εx).

Lemma 3.3.3. The weights of the C∗2-action on the tangent space of F [2]
a at B1 are 2λ, λ,−µ and

−λ− µ.

For B2, four curves go through it: I1(ε) = (x + ε, y−2), I2(ε) = (x, y−2 + ε), I3(ε) = (x, y−2 +

εy−1), and I4(ε) = (x+ εy−1, y−2).

Lemma 3.3.4. The weights of the C∗2-action on the tangent space of F [2]
a at B2 are λ,−2µ,−µ

and λ+ µ.

There are four curves traversing C1 : I1(ε) = (x−2 + ε, xay), I2(ε) = (x−2 + εx−1, xay), I3(ε) =

(x−2, xay + ε), and I4(ε) = (x−2, xay + εx−1).

Lemma 3.3.5. The weights of the C∗2-action on the tangent space of F [2]
a at C1 are −2λ,−λ, aλ+µ,

and (a+ 1)λ+ µ.

At last for C2, four curves go through it: I1(ε) = (x−1+ε, x2ay2), I2(ε) = (x−1, x2ay2+ε), I3(ε) =

(x−1, x2ay2 + εxay), and I4(ε) = (x−1 + εxay, x2ay2).

Lemma 3.3.6. The weights of the C∗2-action on the tangent space of F [2]
a at C2 are −λ, 2aλ +

2µ, aλ+ µ, and −(a+ 1)λ− µ.

Four curves pass through D1 : I1(ε) = (x−2 + εx−1, x−ay−1), I2(ε) = (x−2 + ε, x−ay−1), I3(ε) =

(x−2, x−ay−1 + εx−1), and I4(ε) = (x−2, x−ay−1 + ε).

Lemma 3.3.7. The weights of the C∗2-action on the tangent space of F [2]
a at D1 are −λ,−2λ, (1−

a)λ− µ, and −aλ− µ.
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Four curves pass throughD2 : I1(ε) = (x−1+ε, x−2ay−2), I2(ε) = (x−1, x−2ay−2+εx−ay−1), I3(ε) =

(x−1 + εx−ay−1, x−2ay−2), and I4(ε) = (x−1, x−2ay−2 + ε).

Lemma 3.3.8. The weights of the C∗2-action on the tangent space of F [2]
a at D2 are −λ,−aλ −

µ, (a− 1)λ+ µ, and −2aλ− 2µ.

These eight points form the so-called nonreduced fixed points under the torus action on the

Hilbert scheme F
[2]
a . The other fixed points are composed of pairs of distinct fixed points un-

der the torus action on Fa itself, which we denote by juxtaposing points. As we know, these

fixed points on Fa are A,B,C, and D, so we have six of this type of fixed points on F
[2]
a :

(AB), (AC), (AD), (BC), (BD), and (CD). The weights of the C∗2-action on the tangent spaces

of Fa at fixed points are: λ, µ at A; λ,−µ at B; −λ, aλ+ µ at C; −λ,−aλ− µ at D. The weights

of the C∗-action on the tangent spaces of F [2]
a at this type of fixed points are just putting together

the weights at the different points. So we have

Lemma 3.3.9. The weights of the C∗-action on the tangent spaces of F [2]
a at these six fixed points

are:

(1)(AB) : λ, µ, λ,−µ;

(2)(AC) : λ, µ,−λ, aλ+ µ;

(3)(AD) : λ, µ,−λ,−aλ− µ;

(4)(BC) : λ,−µ,−λ, aλ+ µ;

(5)(BD) : λ,−µ,−λ,−aλ− µ;

(6)(CD) : −λ, aλ+ µ,−λ,−aλ− µ.

After we determine all the weights of the torus action on the Hilbert scheme, we can compute

the intersection numbers of the curve classes with its anticanonical bundle, which is needed to

decide the virtual dimension of the moduli space of stable maps.

Lemma 3.3.10. c1(TF [2]
a ) · β1 = 0, c1(TF [2]

a ) · β2 = 2− a, c1(TF [2]
a ) · β3 = 2.

Proof. Take the image of P (TFa|A) in the Hilbert scheme under (φ∗)−1 in §3.2 as the submanifold

representing β1. The two fixed points in this cycle are A1 and A2, around which C∗2 acts as it does

on I3(ε) in Lemma 3.3.1 and on I3(ε) in Lemma 3.3.2, respectively. So the weights on the tangent

32



spaces at the two points are λ− µ and µ− λ. By the localization formula,

c1(TF [2]
a ) · β1 =

∫
β1

c1(TF [2]
a )

=
−λ− 2λ+ λ− µ− µ

λ− µ
+
−λ− µ+ µ− λ− 2µ

µ− λ

= 0.

We take the image of S∞×B+B×S∞ in F [2]
a as the representative of β2. The two fixed points

are AB and CB. From the discussion before Lemma 3.3.9, C∗2 acts on the tangent spaces at these

points with weights λ and −λ. So applying localization formula, we get

c1(TF [2]
a ) · β2 =

∫
β2

c1(TF [2]
a )

=
λ+ µ+ λ− µ

λ
+
λ− µ− λ+ aλ+ µ

−λ

= 2− a.

We take the image of f0 × C + C × f0 as the representative of β3, which has two fixed points

AC and BC. The weights of the torus action on the tangent spaces at these two points are µ and

−µ. So by the localization formula again,

c1(TF [2]
a ) · β3 =

∫
β3

c1(TF [2]
a )

=
λ+ µ− λ+ aλ+ µ

µ
+
λ− µ− λ+ aλ+ µ

−µ

= 2.

Notice that when a = 1, these intersection numbers are nonnegative. This is a precious property

for a variety. When a = 2, two generators of curve classes have a trivial intersection with the

anticanonical bundle; when a ≥ 2, we begin to have negative intersections from one generator. In

general, computations of Gromov-witten invariants become more difficult if we have more negative

intersections because the formula for the virtual dimension places less restrictions on degrees of
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cohomological classes with nonzero invariants. This is the reason why we’ll concentrate on the case

a = 1 later.

3.4 Invariant Curves

For purpose of applying virtual localization to calculate Gromov-witten invariants, we have to

determine all the invariant curves of the torus action. In this section and in the following, when

there is no danger of confusion, we’ll use the terms ”line” and ”P1” interchangeably when we talk

about curves of genus zero. To find them, we make use of the blowup construction of the Hilbert

scheme set up in section 3.2.

Let f : F̃a × Fa → Fa × Fa be the blowup of the product Fa × Fa along its diagonal ∆, with

the exceptional divisor F̃a, which is the projective bundle P (TFa). Then F [2]
a is the Z2-quotient of

the blowup. Since this quotient map is equivariant, it suffices for us to find the invariant curves in

F̃a × Fa.

First of all, an invariant curve either is completely contained in F̃a or intersects this exceptional

divisor in only finitely many points, where the word ”finitely many” could mean zero.

We first consider the case when the invariant curve is contained in F̃a. Since the projection

P (TFa)→ Fa is equivariant, this invariant curve is mapped to either a fixed point or an invariant

curve in Fa. When it is mapped to a fixed point, it must be the fibre curve of the projective bundle

over this fixed point. So in F [2]
a , we get four invariant P1s, corresponding to four fixed points A,B,C

and D. We assign names to these curves by listing their end points. For example, the curve over

A as [A1, A2], connecting the fixed points A1 and A2 in F
[2]
a . Here we adopt the convention that

[P,Q] means either the invariant curve connecting two fixed points P and Q, or the degree class of

this curve, depending on the context. Three other such curves are [B1, B2], [C1, C2] and [D1, D2].

They are isolated invariant lines.

Now suppose this invariant curve is mapped to an invariant curve in Fa. We only have four

invariant curves in Fa, which are S∞, S0, f0 and f∞. Take the section S∞ through A and C in

Fa as an example. Then this invariant curve must be contained in P (TFa|S∞), but TFa|S∞ =

TS∞ ⊕ NS∞|Fa , where NS∞|Fa represents fibre directions of S∞ in Fa, so P (TFa|S∞) is also a

rational ruled surface. With induced action on this surface, the two sections corresponding to the

34



tangent directions and fibre directions of S∞ in Fa respectively, are invariant lines. One is [A1, C1],

representing the tangent directions; the other is [A2, C2], representing the fibre directions. Similarly,

we have the invariant lines [A1, B1], [A2, B2], [B1, D1], [B2, D2], [C1, D1] and [C2, D2], corresponding

to either tangent directions or fibre or normal directions of three other invariant lines in Fa.

Assume an invariant curve only intersects the exceptional divisor in finitely many points. Then

the blow-down map f composed with the two projections from Fa×Fa to Fa gives rise to two maps

to Fa, which are also equivariant. So as the images of the invariant curve under these two maps, we

get either fixed points or invariant lines in Fa. The two images cannot both be points since the curve

is not contained in the exceptional divisor. If we have a point and a line which does not pass through

the point, we get an isolated invariant line in F [2]
a . Considering the Z2- symmetry, we have eight of

them [AB,AD], [AC,AD], [AB,BC], [BC,BD], [AC,BC], [BC,CD], [AD,BD] and [AD,CD]. If

the point is contained in the line, we get an invariant line with one non-reduced point on it, which

is also isolated. They are [A1, AC], [A2, AB], [B2, AB], [B1, BD], [C1, AC], [C2, CD], [D1, BD] and

[D2, CD].

Suppose both images are lines. First consider the case when they are disjoint. Then they are

either the pair S∞ and S0 or the pair f0 and f∞. In the first case, the C∗2-action near (A,B) ∈

S∞×S0 is described by (λ, µ)(x, y) = (λx, λy), so we have a one-dimensional family of invariant P1’s

connecting AB to CD. Near (A,C) ∈ f0× f∞, the action is expressed as (λ, µ)(x, y) = (µx, λaµy).

Since the two weights are independent, no invariant curve is brought up from this action. So in

total, this case makes a single one-dimensional family of invariant lines connecting AB to CD.

Now take the case when the two image lines are distinct but intersect at one fixed point, e.g. S∞

and f0. Then C∗2-action near (A,A) ∈ S∞× f0 is expressed as (λ, µ)(x, y) = (λx, µy). This action

does not produce any invariant curve except the two coordinate lines, whose induced curves in

F
[2]
a have been discussed above. Other combinations of invariant lines in this case neither produce

anything new.

Finally, we are left with the case where the two lines are the same. To understand the situation,

we study a concrete example. Let C∗ act on C with the standard weight, i.e. λ · x = λx. Then

it induces an action on C[2] = C(2), which is the symmetric product of C. We define a map

τ : C(2) → C2 by τ(x, y) = (x + y, xy). It is easy to see that this map is an isomorphism. With
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this map, C2 inherits a C∗-action by λ(x, z) = (λx, λ2z) for (x, z) ∈ C2. This means the weights of

the torus action at the origin is λ, 2λ.

In fact, the map τ extends to an isomorphism from the symmetric product of P1 to P2, still

denoted as τ : (P1)(2) → P2 by τ((a, b), (x, y)) = (ay + bx, ax, by). It is not hard to see that the

image of the diagonal of (P1)(2) in P2 is a conic line but this conic is not isolated as an invariant

line. In fact, there is a one-dimensional family of invariant conic lines in P2, which breaks up to

two coordinate lines[16]. We summarize the conclusions in the following

Lemma 3.4.1. Let C∗ act on P1 as λ · (x, y) = (λx, y). Then it induces an action on P2 as

λ · (x, y, z) = (λx, λ2y, z) via the isomorphism from the symmetric product (P1)(2) to P2. Around

the fixed point (0, 0, 1) ∈ P2, this action has weights λ, 2λ; the three coordinate lines are isolated

invariant lines and there is a one-dimensional family of invariant lines defined by x2 = µyz with

µ ∈ C∗−0, the generic curve of which has class twice the line class in P2. When µ→ 0, this family

approaches the double cover of the coordinate line {(0, y, z) : (y, z) ∈ P1} with weight 2λ at (0, 0, 1);

when µ→∞, it degenerates to the nodal curve the union of two coordinate lines {(x, 0, z) : (x, z) ∈

P1} ∪ {(x, y, 0) : (x, y) ∈ P1} with weight λ at (0, 0, 1) along {(x, 0, z) : (x, z) ∈ P1}.

Now we apply this picture to the four invariant lines S∞, S0, f0 and f∞ in Fa. Taking S∞

as an example, we get an embedding P2 in F
[2]
a and the three coordinate lines in P2 as the

lines [A1, AC], [AC,C1] as before and [A1, C1]′ from A1 to C1, which is a different line from

[A1, C1] discussed before, and a one-dimensional family of invariant lines from A1 to C1, the

generic curve of which has the double of a line class. Similarly, we have the new isolated in-

variant lines [A2, B2]′ from A2 to B2, [B1, D1]′ from B1 to D1 and [C2, D2]′ from C2 to D2, and

the corresponding one-dimensional families of invariant lines. From the description before this

lemma, we realize that the invariant lines [A1, C1], [A2, B2], [B1, D1] and [C2, D2] defined before

are obtained from diagonals and as such they are not isolated and their classes are double the

classes of [A1, C1]′, [A2, B2]′, [B1, D1]′ and [C2, D2]′ respectively. Also the C∗-action on the ends of

[A1, C1]′, [A2, B2]′, [B1, D1]′ and [C2, D2]′ has twice the weights on the corresponding ends of the

non-isolated lines. This is the reason why a pair of a weight and its double always appear at each

fixed point exhibited in Lemma 3.3.1 through 3.3.8.

Up till this point, we have found all the isolated invariant curves and one-dimensional families
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of invariant curves in F
[2]
a . For the purpose of computations for Gromov-Witten invariants, their

classes should be decided.

Lemma 3.4.2. (i)[A1, A2] = [B1, B2] = [C1, C2] = [D1, D2] = β1;

(ii)[A1, AC] = [C1, AC] = β2 − β1, [B1, BD] = [D1, BD] = β2 + aβ3 − β1, [A2, AB] =

[B2, AB] = [C2, CD] = [D2, CD] = β3 − β1;

(iii)[A1, C1] = 2β2 − 2β1, [A2, C2] = 2β2 + aβ1, [A1, B1] = [C1, D1] = 2β3, [A2, B2] =

[C2, D2] = 2β3 − 2β1, [B1, D1] = 2β2 + 2aβ3 − 2β1, [B2, D2] = 2β2 + 2aβ3 − aβ1;

(iv)[A1, C1]′ = β2 − β1, [A2, B2]′ = [C2, D2]′ = β3 − β1, [B1, D1]′ = β2 + aβ3 − β1.

Proof. (i) Obvious.

(ii) A1 is connected to AC by the line which is obtained by blowing up the line S∞×A+A×S∞

at A×A in Fa × Fa and then projecting to A∗(F
[2]
a ) by the inverse of φ∗. By Proposition 3.2.3,

f∗(S∞ ×A+A× S∞) = [A1, AC] + β1,

where β1 comes from the second term in the formula. But S∞×A+A×S∞ is rationally equivalent

to S∞ × pt + pt × S∞ in Fa × Fa, where we take pt to be a point off S∞. So [A1, AC] = β2 − β1.

Others are similar.

(iii) [A1, C1] is the line obtained from the projectivization of the tangent directions of the

section S∞. By Lemma 3.2.5(2),

ζ ∩ P (TFa|S∞) = (2− a)β1 − 2β2.

Now TFa|S∞ = TS∞⊕NS∞|Fa , in which TS∞ = O(2) since S∞ = P1 and NS∞|Fa is the line bundle

of fibre directions of S∞ in Fa, implying NS∞|Fa = O(−a). This means that

P (TFa|S∞) = P (O(2)⊕O(−a)) = Proj(O(−2)⊕O(a))

∼= Proj(O ⊕O(−2− a))
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is another rational ruled surface, in which [A1, C1] is the ∞-section. By Lemma 7.9, Ch.2[11],

ζ ∩ P (TFa|S∞) = −[A1, C1]− aβ1.

So, we get [A1, C1] = 2β2− 2β1. Clearly, [A2, C2] is the 0-section in the ruled surface, which means

[A2, C2] = [A1, C1] + (2 + a)β1 = 2β2 + aβ1.

Similarly, by Lemma 3.2.5(4), we have

ζ ∩ P (TFa|f ) = 2β1 − 2β3.

Now P (TFa|f0) = Tf ⊕Nf0|TFa , where again Tf0 = TP1 = O(2) and Nf0|TFa is the line bundle of

normal directions of f0 in Fa. This line bundle is trivial since

c1(Nf0|TFa) = c1(TFa|f )− c1(Tf0) = f0 · (2S0 + (2 + a)f0)− 2 = 0.

So we have

P (TFa|f0) = P (O ⊕O(2)) = Proj(O ⊕O(−2)),

which is another ruled surface. Thus we have

[A2, B2] = −ζ ∩ P (TFa|f0) = 2β3 − 2β1,

and [A1, B1] = [A2, B2] + 2β1 = 2β3. It is obvious that [C1, D1] = [A1, B1] and [C2, D2] = [A2, B2].

Finally, by Lemma 3.2.5(3) and (1), we have

ζ ∩ P (TFa|S0) = (2 + a)β1 − 2β2 − 2aβ3.

38



Because

TFa|S0 = TS0 ⊕NS0|Fa = O(2)⊕O(a),

we get

P (TFa|S0) = P (O(2)⊕O(a)) = Proj(O(−2)⊕O(−a))

∼= Proj(O ⊕O(2− a)), if a ≥ 2;Proj(O ⊕O(−1)), if a = 1

When a ≥ 2, by Lemma 7.9, Ch.2[11], we have

ζ ∩ P (TFa|S0) = −[B2, D2] + 2β1,

so [B2, D2] = 2β2 + 2aβ3 − aβ1, and [B1, D1] = [B2, D2] + (a− 2)β1 = 2β2 + 2aβ3 − 2β1.

When a = 1, we get

ζ ∩ P (TFa|S0) = −[B1, D1] + β1.

So [B1, D1] = 2β2 + 2β3 − 2β1 and [B2, D2] = [B1, D1] + β1 = 2β2 + 2β3 − β1.

(iv) We take [A1, C1]′ as an example. From the discussion after Lemma 3.4.1, the class [A1, C1]′

is the same as a line class in P2, one of which is the line [A1, AC], resulting in the conclusion.

From this lemma, we know the generic line in the one-dimensional family connecting AB and

CD is of class 2β2 + β3 since as limits it breaks up into the nodal curves the line from AB to AD

intersecting the line from AD to CD and the line from AB to BC intersecting the line from BC

to CD.

All the isolated invariant lines and one-dimensional families of invariant lines are shown in the

following diagram. In this diagram, the isolated invariant lines are depicted by straight or curved

lines with their degrees on them, the one-dimensional families of invariant lines are described by

wavy lines with the degree of generic lines in the families attached.
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Figure 3.2: Invariant Lines
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Finally, for the convenience of computational purpose, we make the following diagrams for F [2]
1 ,

showing weights at each fixed point connected to four other fixed points along isolated invariant

lines drawn from Lemma 3.3.1 through Lemma 3.3.9. In each of the first eight diagrams, we can

see a pair of a weight and its double present. These double weights certainly go along the isolated

invariant lines connecting two ends.

Figure 3.3: Weights At Fixed Points
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Figure 3.3: Weights At Fixed Points(cont.)
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Chapter 4

Computation of Gromov-Witten
Invariants

When a smooth projective variety admits a torus action, the moduli space of stable maps automat-

ically inherits a torus action. The fixed points of the induced action correspond to invariant lines of

the action on the variety. When the torus action on the variety has finitely many fixed points and

the invariant lines connecting the fixed points are isolated, the connected components of fixed point

loci on the moduli space can be determined and recorded by graphs with additional data. The

edges of the graphs represent the non-contracted components of the nodal curves mapped to the

invariant lines, the vertices represent the contracted components mapped to the fixed points of the

torus action. Then the virtual localization technique is used to compute Gromov-Witten invariants.

There were various cases where people succeeded in applying this approach. See [10, 7, 20], etc.

Our example of Hilbert scheme F [2]
1 exhibits slightly different property as we realized before,

which is that there are one-dimensional families of invariant lines for some curve degrees. The point

of our strategy to overcome the problem is for some curve classes, the collection of the relevant

invariant lines may differ. If for some curve classes, all the relevant invariant lines are isolated, we

can obtain all the connected components of the moduli spaces in the usual way and then apply the

localization formula to compute Gromov-Witten invariants corresponding to these curve classes.

4.1 Connected Components Analysis

In this section we follow the presentation of [10, 7, 20], etc. Suppose X is a smooth projective

variety with a torus T -action. Then the moduli space of stable mapsM0,n(X,β) with β ∈ H2(X,Z)

admits a T -action by composing maps from nodal curves to X with torus action. A fixed point of

the moduli space under the torus action has the following properties:

(1) all marked points, nodes, contracted components and ramification points are mapped to
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fixed points in X;

(2) non-contracted components are mapped onto invariant lines, which are P1’s, and are ramified

only over two fixed points connecting the lines.

When we fix a curve degree β, the sum degree of the images of the maps in the moduli space

on the irreducible components of the nodal curves has to be β. This restricts the collection of

invariant lines appearing in the connected components of fixed point loci. If for some curve class β,

all the invariant lines which may appear in the connected components are isolated, the connected

components of the fixed point loci can be described as follows: to each fixed stable map f : C → X,

we associate a marked graph Γ in the following way: Γ has one vertex v for each connected

component in the inverse image under f of the fixed point set in X, which is labeled with the

name of that fixed point if the component is mapped to that point; Γ has one edge e for every non-

contracted component, whose two vertices are labeled with two different fixed points and which

is labeled with the degree de of the map from the component to its image line. Also we label

each vertex v with a leg for each marked point which is mapped to its corresponding fixed point.

We usually use numerals to denote the legs in graphs. Then all the stable maps with the same

corresponding graph Γ form a connected component and all connected components are described

by all such graphs.

Denote the valence val(v) of a vertex v as the number of edges and legs attached to it. For

each graph Γ, define

MΓ =
∏
v∈Γ

M0,val(v),

where we adopt the convention that

M0,1 =M0,2 = pt.

This is a DM-stack. There is a universal family of T -fixed stable maps to X,

π : C →MΓ,
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which induces a morphism γ :MΓ →M0,n(X,β).

The automorphism group A of this family is filtered by an exact sequence

1→
∏
e∈Γ

Z/(de)→ A→ Aut(Γ)→ 1,

where Aut(Γ) denotes the automorphism group of Γ. The induced morphism

γ/A :MΓ/A→M0,n(X,β)

is a closed immersion of DM-stacks and is realized as a connected component of the moduli space

under the torus action.

4.2 The Virtual Normal Bundle

In this section, we recall the standard computations in [10, 7, 20].

Over each connected component MΓ/A of fixed point loci, we describe the obstruction theory

of M0,n(X,β) restricted to it. From the second chapter, we know there is a canonical perfect

obstruction theory on M0,n(X,β) defined by a two-term complex E0 → E1, whose kernel T 1 is

the tangent space of the moduli space and whose cokernel T 2 represents the obstruction theory for

stable maps. They are related in the exact sequence

0→ Ext0(ΩC(D),O)→ H0(C, f∗TX)→ T 1 → Ext1(ΩC(D),O)

→ H1(C, f∗X)→ T 2 → 0,

in which D represents the divisor of marked points on C. When restricted to the connected

componentMΓ/A, the four terms other than the sheaves T 1 and T 2 form vector bundles as fibres.

We call them as B1, B2, B4 and B5 respectively. Each vector bundle Bi decomposes as the direct

sum of the fixed part Bf
i and the moving part Bm

i under the torus action. The moving parts inherit
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a natural T -action. From the above exact sequence, we have

eC∗(Nvir
Γ ) =

eC∗(Bm
2 )eC∗(Bm

4 )
eC∗(Bm

1 )eC∗(Bm
5 )
,

where Nvir
Γ stands for the virtual normal bundle of the connected component.

This is the denominator in the localization formula and has to be worked out to apply local-

ization formula. In order to do that, we have to work out each term one by one. But first we do

some preparatory work.

Lemma 4.2.1. For any invariant line P1 connecting two fixed points p1 and p2, there exist a weight

λ1 at p1 and a weight λ2 at p2 such that they differ by a negative sign.

Proof. Without loss of generality, we can choose a coordinate system such that p1 is the origin

and p2 is the infinity. So the action T × P1 → P1 takes the form tx = b(t)x for any t ∈ T and

x ∈ P1 −∞. It is obvious that b : T → T is a character, so it takes the form b(t) = tλ for some

character λ. The induced action on Tp1P1 has the weight λ and since Tp1P1 is a subbundle in Tp1X,

the T -action on Tp1X has λ as a weight. If we reverse the role of p1 and p2, we get −λ as a weight

for Tp2X, which finishes the proof.

We need some notations. A flag F is a pair (v, e), where v is a vertex and e is an edge to which

v is attached. We adopt the convention v(F ) = v, e(F ) = e and i(F ) = i(v), the marking of the

nodal point in the vertex v. We denote j(F ) to be the marking of the other vertex of the edge e.

The special weight at pi(F ) corresponding to e determined in the previous lemma is denoted as λF .

Vs,t = the subset of vertices with s flags and t legs;

Vs = the subset of vertices with s flags or legs;

Fs,t = the subset of flags whose vertices are in Vs,t;

Fs = the subset of flags whose vertices are in Vs.

Lemma 4.2.2. For a flag F = (v, e), the T -action on TvP1 induced by that on X has weight λF
de

.

Proof. As we did in the proof of Lemma 1, we can choose a coordinate system for P1 ∈ X such that

pi(F ) is the origin and pj(F ) is the infinity, and so the action T ×P1 → P1 takes the form tx = tλF x

for any t ∈ T , x ∈ P1 −∞ and some character λF . We can also choose a coordinate system for P1
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corresponding to e, so that the map f takes the form y = f(z) = zde for any z ∈ P1 −∞. Now

under the T -action on X, ty = tλF y, so tz = t
λF
de z, and hence the T -action on TvP1 has weight

λF
de

.

4.2.1 Bm
1

B1 = Ext0(ΩC(D),O), also denoted Autm∞, parameterizes infinitesimal automorphisms of the

pointed nodal curve. It decomposes into the direct sum of those on each irreducible component of

the nodal curve. Apparently, T acts on the contracted components trivially, so Bm
1 is the direct

sum of the moving parts on the non-contracted components, i.e.

Bm
1 = ⊕edgesAutm∞(Ce).

Following [20], we divide the situation in two cases.

Case 1: F ∈ F1, and the other vertex is in V≥2. Treating this other vertex as ∞ in the non-

contracted component, we have the automorphism ϕ takes the form ϕ(x) = ax+b, for x ∈ P 1−∞,

and 0 6= a, b ∈ C. We also know that tx = tλF x, so

tϕt−1(x) = tϕ(t−
λF
de x) = t(at−

λF
de x+ b) = t

λF
de (at−

λF
de x+ b) = ax+ t

λF
de b.

This means that the T -action on the infinitesimal automorphisms of this non-contracted component

has weight λF
de

.

Case 2: Neither vertices is in V1. Then the automorphism ϕ takes the form ϕ(x) = ax, for

x ∈ P 1 −∞, and 0 6= a ∈ C. As above,

tϕt−1(x) = tϕ(t−
λF
de x) = t(at−

λF
de x) = t

λF
de (at−

λF
de x) = ax,

which means that the T -action on the infinitesimal automorphisms of this non-contracted compo-

nent has weight 0. Putting together, we get

e(Bm
1 ) =

∏
F∈F1

λF
de
.
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4.2.2 Bm
4

B4 = Ext1(ΩC(D),O), also denoted Def(C(D)), represents the space of deformations of the

pointed nodal curve. Again the torus action on the deformations within each contracted component

is trivial and since non-contracted components are projective lines without nontrivial deformations,

the moving part of B4 is the direct sum of moving parts of smoothing nodes between non-contracted

components and contracted components or between pairs of non-contracted components. A well-

known fact is that smoothing a node is identified as a bundle with fibres the tensor product of the

tangent spaces of the two components at the node.

Let LF be the universal cotangent line bundle over MΓ at the nodal point corresponding to

F ∈ F(2,0) ∪ F≥3, and write eF = c1(LF ). When F does not belong to this union, we set eF = 1.

We still need to consider two different cases.

Case 1: F ∈ F≥3. Then at the vertex of F , a non-contracted component intersects with a

contracted component. The weight of the T -action for this part is
λF
de
− eF .

Case 2: F ∈ F(2,0). Then at the vertex of F , two non-contracted components intersect. The

weight of the T -action for this part is
λF
de

+
λG
de′

, where (G, e′) is the other flag.

So,

e(Bm
4 ) =

∏
F∈F≥3

(
λF
de
− eF )

∏
F∈F(2,0)

(
λF
de

+
λG
de′

).

4.2.3 Bm
2 −Bm

5

B2 and B5 represents the spaces of deformations and obstructions of the maps. The normalization

sequence resolving all of the nodes of C is

0→ OC →
⊕
verts

OCv ⊕
⊕
edges

OCe →
⊕
flags

OxF → 0,
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where in the middle term, the vertices that the sum is over have valence at least 3. After being

twisted by f∗TX, this sequence gives rise to an exact sequence of cohomology groups,

0→ H0(f∗TX)→
⊕
verts

H0(Cv, f∗TX)⊕
⊕
edges

H0(Ce, f∗TX)→
⊕
flags

Tpi(F )
X

→ H1(f∗TX)→
⊕
verts

H1(Cv, f∗TX)⊕
⊕
edges

H1(Ce, f∗TX)→ 0,

in which we use the fact that H1(OxF , f∗TX) = 0. Note that H0(Cv, f∗TX) = Tpi(v)X, because

Cv is connected and f is constant on it. Also, since we only consider genus zero invariants, Cv is a

genus zero stable curve for each vertex v. So H1(Cv, f∗TX) = 0. So, we have

H0 −H1 =
⊕
verts

Tpi(v)X −
⊕
flags

Tpi(F )
X

+
⊕
edges

H0(Ce, f∗TX)−
⊕
edges

H1(Ce, f∗TX)

The weights on
⊕

verts Tpi(v)X and
⊕

flags Tpi(F )
X are given as the assumption. Also with the

weights at the two fixed points 0 and ∞ of the T -action on P 1, we can use localization formula in

equivariant K-theory to compute the weights on the virtual bundle H0(Ce, f∗TX)−H1(Ce, f∗TX).

Thus the equivariant Euler class of the virtual bundle Bm
2 − Bm

5 is determined. Putting all these

together, we obtain the equivariant Euler class of the virtual normal bundle Nvir
Γ .

4.3 One-Point Gromov-Witten Invariants

Let’s first concentrate on the study of moduli space of stable maps of degree dβ1 for a positive

integer d. To get nontrivial Gromov-Witten invariants < α1, α2, · · · , αn >0,n,dβ1 , for αi ∈ A∗(F [2]
a ),

the cohomological degrees of αi should add up to n+ 1, i.e.

n∑
i=1

deg(αi) = n+ 1.
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This happens only when one class has degree 2 and other classes all have degree 1. And by Divisor

Axiom of Gromov-Witten invariants, when deg(αn) = 1,

< α1, α2, · · · , αn >0,n,dβ1=
∫
dβ1

αn < α1, α2, · · · , αn−1 >0,n−1,dβ1 .

So by induction, the computation of Gromov-Witten invariants for curve classes dβ1 is reduced to

that corresponding to a single class of degree 2, i.e. < α >0,1,dβ1 , for α ∈ A2(F [2]
a ). From [13], we

have

Theorem 4.3.1. (i) < βj >0,dβ1= 0 for j = 6, 7, 8, 9;

(ii) < β4 >0,dβ1= −2
d , < β5 >0,dβ1= −4

d .

Proof. (i) is clear from [13].

(ii) < β4 >0,dβ1= 2(KX · S0)/d = 2(−2S0 − 3f) · S0/d = −2
d ,

< β5 >0,dβ1= 2(KX · f)/d = 2(−2S0 − 3f) · f/d = −4
d .

From now on, we assume a = 1, and we write F for F1. We know A1(F [2]) is freely generated

by β1, β2 − β1 and β3 − β1 and the invariant lines in Figure 3.2 can all be expressed as linear

combinations in these generators with nonnegative coefficients. With the point of view of the

virtual localization, GW-invariants of any number of points of any curve class β vanish except that

β = dβ1 + d2(β2 − β1) + d3(β3 − β1),

for some non-negative integers d, d2, d3.

With the above theorem, we assume that d2, d3 are not simultaneously zero. To compute the

one-pointed GW-invariants, first the virtual dimension of M0,1(F [2], β) is

virdimM0,1(F [2], β) = d2 + 2d3 + 2.

For the dimensional reason, we only need to consider (d2, d3) = (1, 0), (2, 0) or (0, 1) to get

nonzero 1-point invariants. Our strategy for computations is that we choose a suitable cycle

to represent the cohomology class so that there are only finitely many connected components
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of a specific curve class intersecting the cycle. Only these connected components have non-trivial

contributions in the localization formula. Each connected component shows up as a tree of invariant

lines with markings described by a graph. In the localization formula, the equivariant Euler classes

of their virtual normal bundles have been worked out; the restriction of the cohomology class to

the connected components can be decided by applying Corollary 2.4.1. In particular, if no tree of

invariant lines of the required degree intersects the cycle, then the invariant vanishes. This prompts

the idea that we purposely choose some representative of a cohomological class so that either it

stays away from any such tree or intersects with as few such trees as possible. In this way, the

computation with the localization formula is simplified.

For the pairs (2, 0) and (0, 1), the virtual dimension of the moduli space is equal to 4, so the

insertion of nonzero Gromov-Witten invariants must be a point class.

Proposition 4.3.1. For all curve class β,

< pt >0,1,β= 0,

except that < pt >0,1,β3= 2.

Proof. We first remark, in this proof and in the proofs of propositions throughout this chapter, we

constantly refer to Figure 3.2 for configuration of fixed points and invariant lines and Figure 3.3

for relevant weights at fixed points.

For the first pair (2, 0), we take the point BD for the point class. Then any tree of invariant

lines passing through BD has to contain β3 from Figure 3.2, which is not allowed in (2, 0). So the

localization formula expansion does not have any nonzero term in it. So < pt >0,1,β= 0 in this

case.

For the second pair (0, 1), we take the point AC for the point class. When d 6= 1, it is away

from any tree of invariant lines of sum degree β. So < pt >0,1,β= 0 in this case.

Now assume d = 1, i.e. β = β3. Then there are two nonzero terms in the localization formula

from connected components described by the following graphs:
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s cAC

1
BC1

Γ1

cs ADAC

1
1

Γ2

where here and in the following, the boldface points mean where the marked points are mapped to

and the numbers above line segments mean the degrees of the lines.

Now we determine the equivariant Euler classes of their virtual normal bundles. For Γ1,

eC∗(Bm
1 ) = −µ, eC∗(Bm

4 ) = 1.

To compute
eC∗(Bm

2 )
eC∗(Bm

5 )
, we use the localization formula to f∗TF [2] in equivariant topological

K-theory. This technique has been used previously in a similar context by [6]. That is

χ(f∗TF [2]) =
tλ + tµ + t−λ + tλ+µ

1− t−µ
+
tλ + t−µ + t−λ + tλ+µ

1− tµ

= 1 + tλ + t−λ + t−µ + tµ + tλ+µ,

then,

eC∗(Bm
2 )

eC∗(Bm
5 )

= λ2µ2(λ+ µ).

Therefore,

eC∗(Nvir
Γ1

) =
eC∗(Bm

2 )eC∗(Bm
4 )

eC∗(Bm
1 )eC∗(Bm

5 )
= −λ2µ(λ+ µ).

For Γ2, eC∗(Bm
1 ) = −λ − µ, eC∗(Bm

4 ) = 1. Again by the localization formula in equivariant

topological K-theory,

χ(f∗TF [2]) =
tλ + tµ + t−λ + t−λ−µ

1− tλ+µ
+
tλ + tµ + t−λ + tλ+µ

1− t−λ−µ

= 1 + tλ + t−λ + tµ + tλ+µ + t−λ−µ,

52



so,

eC∗(Bm
2 )

eC∗(Bm
5 )

= λ2µ(λ+ µ)2, eC∗(Nvir
Γ2

) =
λ2µ(λ+ µ)2

−λ− µ
= −λ2µ(λ+ µ).

Putting these term in the localization formula, we get

< pt >0,1,β3=
−λ2µ(λ+ µ)
−λ2µ(λ+ µ)

+
−λ2µ(λ+ µ)
−λ2µ(λ+ µ)

= 1 + 1 = 2,

where the numerators by Corollary 2.4.1 are equivariant point class restricted to the point AC,

which is the product of all the weights at AC.

For the pair (1, 0), the virtual dimension of the moduli space is equal to 3, so we need to feed

a cohomology class of degree 3 or homological class of degree 1 to get nonzero GW-invariants.

Proposition 4.3.2. For β = dβ1 + (β2 − β1),

(i) < β1 >0,1,β= 0, for any d;

(ii) < β2 >0,1,β= 0, for any d 6= 1; −1, for d = 1;

(iii) < β3 >0,1,β= 0, for any d 6= 1; 1, for d = 1.

Proof. (i) Let’s take the invariant line between B1 and B2 to be the representative of β1. Since

any tree of invariant lines touching this representative has to contain β3, which is not allowed, we

have < β1 >0,1,β= 0 for any d ≥ 0.

(ii) For β2, we take the invariant line between AB and BC as a representative. When d 6= 1,

for the same reason, this invariant line does not intersect any tree of invariant lines of sum class β,

so the GW-invariants are equal to zero. When d = 1, β = β2. We have two nonzero terms in the

localization formula from connected components described by the following graphs:

s cAB

1
BC1

Γ1

sc BCAB

1
1

Γ2
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For Γ1, eC∗(Bm
1 ) = −λ, eC∗(Bm

4 ) = 1.

χ(f∗TF [2]) =
tλ + tµ + tλ + t−µ

1− t−λ
+
tλ + t−µ + t−λ + tλ+µ

1− tλ

= 2tλ + t−λ + t−µ + 1,

so,

eC∗(Nvir
Γ1

) =
λ3µ

−λ
= −λ2µ.

For Γ2, eC∗(Bm
1 ) = λ, eC∗(Bm

4 ) = 1. Also, χ(f∗TF [2]
a ) is the same as for Γ1. So

eC∗(Nvir
Γ2

) = λ2µ.

Using localization formula, we have

< β2 >0,1,β2=
−λµ2

−λ2µ
+
−λµ(λ+ µ)

λ2µ
= −1.

(iii) Finally, we come to < β3 >0,1,β. We take the invariant line from BC to BD to be the

representative cycle of β3. Again, when d 6= 1, this invariant line does not intersect any tree of

invariant lines of sum class β, so the GW-invariants are equal to zero. When d = 1, only one

component contributes a nonzero term, which is described by the graph:

sABc BC

1
1

Γ

where the marked point is mapped to BC. Now eC∗(Bm
1 ) = λ, eC∗(Bm

4 ) = 1. χ(f∗TF [2]
a ) is equal

to the corresponding term for Γ1 or Γ2 above. So,

eC∗(Nvir
Γ ) = λ2µ.

54



Using localization formula, we have

< β3 >0,1,β2=
λ2µ

λ2µ
= 1.

Up to this point, we have computed all the 1-pointed Gromov-Witten invariants of F [2] for all

curve classes.

4.4 Two-Point Gromov-Witten Invariants

When n = 2,

virdimM0,2(F [2], β) = d2 + 2d3 + 3,

for β = dβ1 +d2(β2−β1) +d3(β3−β1). To get nonzero invariants, we must have d2 + 2d3 ≤ 5. The

complete list of these pairs of (d2, d3) are (5, 0), (4, 0), (3, 0), (2, 0), (1, 0), (3, 1), (2, 1), (1, 1), (0, 1), (1, 2)

and (0, 2), in other word, we have

Proposition 4.4.1. For β = dβ1 + d1(β2 − β1) + d2(β3 − β1), where (d2, d3) 6= (5, 0), (4, 0), (3, 0),

(2, 0), (1, 0), (3, 1), (2, 1), (1, 1), (0, 1), (1, 2), (0, 2),

< α, β >0,2,β= 0,

for any α, β ∈ H∗(F [2],Q).

In the following we shall treat different cases one by one. The strategy is almost the same as

for computing one-point invariants: if we can choose a cycle representing one cohomology class

which never intersects any tree of invariant lines of the required degree or if we can choose the

representative cycles for the two classes which do not intersect any tree of invariant lines of the

required degree simultaneously, the Gromov-Witten invariant in question must vanish. Generally,

we keep the freedom for choosing such representatives so that there are as small numbers of such

trees as possible with nonempty intersection with the chosen representatives.
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Especially, when one insertion is a point class, this can be treated more readily. We are in

such situation for the pairs (5, 0), (3, 1), (1, 2), (4, 0), (2, 1) and (0, 2). In the former three pairs, the

virtual dimension of the moduli space is equal to 8, so the degree decomposition of the two insertions

must be 4 + 4. In the latter three pairs, the virtual dimension is 7, so the degree decomposition of

the two insertions must be 3 + 4.

Proposition 4.4.2. For β = dβ1 + 5(β2 − β1), dβ1 + 3(β2 − β1) + (β3 − β1),

< pt, pt >0,2,β= 0

for any d.

Proof. For β = dβ1 + 5(β2 − β1), we choose the point BD to represent one point class. Then BD

does not lie in any tree of invariant lines of sum degree β, so < pt, pt >0,2,β= 0 in this case.

For β = dβ1 + 3(β2 − β1) + (β3 − β1), we choose the point BD to represent one point class and

the point AC to represent another point class. Then any tree of invariant lines of sum degree β

does not pass through both of the points simultaneously, so < pt, pt >0,2,β= 0 in this case.

Note for β = dβ1 +(β2−β1)+2(β3−β1), < pt, pt >0,2,β is not computable by this method since

no matter how we choose the representatives of the point class, the existence of one-dimensional

families of invariant lines makes it impossible for us to only have isolated trees of invariant lines of

the required curve class through these representatives.

Now for the latter three pairs, we have

Proposition 4.4.3. For β = dβ1 + 4(β2 − β1), dβ1 + 2(β3 − β1) and dβ1 + 2(β2 − β1) + (β3 − β1),

< pt, βi >0,2,β= 0,

for i = 1, 2, 3 and any d.

Proof. First for β = dβ1 + 4(β2 − β1), if we take the point BD for the point class, then any tree

of invariant lines of the designated degree cannot pass through this point, so < pt, βi >0,2,β= 0 for

i = 1, 2, 3.
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Then for β = dβ1 + 2(β3−β1), we choose the point D1 for the representative of the point class,

the invariant line between A1 and A2 for β1, the invariant line between AB and BC for β2, the

invariant line between BC and AC for β3. Then we see < pt, βi >0,2,β= 0, for i = 1, 2, 3.

Finally assume β = dβ1 + 2(β2 − β1) + (β3 − β1). If we take the point BD for the point class

and keep the representative for β1 as above, then we see < pt, β1 >0,2,β= 0; if we take the point

D1 for the point class and keep the representative for β2 as above, then we see < pt, β2 >0,2,β= 0.

To consider < pt, β3 >0,2,β, we take D2 for the point class and the line between B2 and AB

for the representative of β3 − β1, then we see there isn’t any tree of invariant lines of this degree

connecting two cycles. So < pt, β3 − β1 >0,2,β= 0. But < pt, β1 >0,2,β= 0 from above, so we have

< pt, β3 >0,2,β= 0.

For the pairs (d2, d3) = (3, 0), (1, 1), the virtual dimension of the moduli space is equal to 6.

Then the degree decomposition of the two insertions is either 2 + 4 or 3 + 3. The first type is dealt

with in the following

Proposition 4.4.4. (i) For β = dβ1 + 3(β2 − β1),

< pt, βi >0,2,β= 0,

for i = 4, 5, 6, 7, 8, 9 and any d;

(ii) For β = dβ1 + (β2 − β1) + (β3 − β1), we have

< pt, β4 >0,2,β=< pt, β6 >0,2,β=< pt, β8 >0,2,β= 0,

for any d. Also, for d 6= 2,

< pt, β9 >0,2,β= 0,

but for d = 2, < pt, β9 >0,2,β= 2.

Proof. (i) We take the point BD for the representative for point class and the standard represen-

tatives for βi listed in §3.2, where f0 is assigned to the undesignated f ’s and the point A assigned
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to pt’s in those expressions. Then we see that any tree of invariant lines has to contain β3, which

is excluded by the given curve class, so < pt, βi >0,2,β= 0 for i = 4, · · · , 9.

(ii) For β = dβ1 + (β2 − β1) + (β3 − β1), if we take the point BD for the point class and the

standard representative for β4, then we see that < pt, β4 >0,2,β= 0 for any d.

Now we compute < pt, β6 >0,2,β. We choose the point BD to represent the point class and the

standard representative for β6. Then we see that < pt, β6 >0,2,β= 0 if d 6= 2. When d = 2, there

are nonzero terms from the fixed point loci described by the graphs:

s c1 1BD

1
AB

2
BCs
Γ1

ss 11 AB

2
BD

1
BCc
Γ2

s c1 1BD

1
CD

2
ADs
Γ3

ss CD

2
BD

1
1 cAD 1

Γ4

For Γ1, eC∗(Bm
1 ) = λ, eC∗(Bm

4 ) = −λ(λ + µ). To compute
eC∗(Bm

2 )
eC∗(Bm

5 )
, let’s use e1 to denote

the invariant line from BC to BD, e2 to denote the invariant line from AB to BC. Then by

localization,

χ(f∗TF [2]|e1) =
tλ + t−µ + t−λ + tλ+µ

1− t−λ−µ
+
tλ + t−µ + t−λ + t−λ−µ

1− tλ+µ

= tλ + t−λ + t−µ + tλ+µ + t−λ−µ + 1.

Also χ(f∗TF [2]|e2) = 2tλ + t−λ + t−µ + 1 from before. Then applying normalization sequence,

χ(f∗TF [2]) = χ(f∗TF [2]|e1) + χ(f∗TF [2]|e2)− TF [2]|BC

= t−λ−µ + 2tλ + t−λ + t−µ + 2.

From this we have

eC∗(Bm
2 )

eC∗(Bm
5 )

= −λ3µ(λ+ µ),
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and hence

eC∗(Nvir
Γ1

) = λ3µ(λ+ µ)2.

For Γ2, eC∗(Bm
1 ) = 1, eC∗(Bm

4 ) = −λ+ (λ+ µ) = µ,
eC∗(Bm

2 )
eC∗(Bm

5 )
is the same as for Γ1, so

eC∗(Nvir
Γ2

) = −λ3µ2(λ+ µ).

For Γ3, eC∗(Bm
1 ) = −λ, eC∗(Bm

4 ) = λµ. We use e1 to denote the invariant line from AD to BD,

e2 to denote the invariant line from AD to CD. Then,

χ(f∗TF [2]|e1) =
tλ + tµ + t−λ + t−λ−µ

1− t−µ
+
tλ + t−µ + t−λ + t−λ−µ

1− tµ

= tλ + t−λ + tµ + t−µ + t−λ−µ + 1,

χ(f∗TF [2]|e2) =
tλ + tµ + t−λ + t−λ−µ

1− t−λ
+
t−λ + tλ+µ + t−λ + t−λ−µ

1− tλ

= tλ + 2t−λ + t−λ−µ + 1,

χ(f∗TF [2]) = χ(f∗TF [2]|e1) + χ(f∗TF [2]|e2)− TF [2]|AD

= t−µ + t−λ−µ + tλ + 2t−λ + 2.

So

eC∗(Bm
2 )

eC∗(Bm
5 )

= λ3µ(λ+ µ), eC∗(Nvir
Γ3

) = −λ3µ2(λ+ µ).

For Γ4, eC∗(Bm
1 ) = 1, eC∗(Bm

4 ) = λ+ µ,
eC∗(Bm

2 )
eC∗(Bm

5 )
is the same as for Γ3, so

eC∗(Nvir
Γ4

) = λ3µ(λ+ µ)2.
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Using localization formula, we have

< pt, β6 >0,2,β2+β3=
λ2µ(λ+ µ)µ(λ+ µ)

λ3µ(λ+ µ)2
+
λ2µ(λ+ µ)µ2

−λ3µ2(λ+ µ)

+
λ2µ(λ+ µ)µ(λ+ µ)
−λ3µ2(λ+ µ)

+
λ2µ(λ+ µ)(λ+ µ)2

λ3µ(λ+ µ)2

=0.

To compute< pt, β8 >0,2,β, we take the point BD for point class and the standard representative

for β8, where f is taken to be f0. Then < pt, β8 >0,2,β= 0 when d 6= 2. When d = 2, there are two

nontrivial connected components contributing to localization described by the graphs:

s c1 1BD

1
AB

2
BCs
Γ1

ss 11 AB

2
BD

1
BCc
Γ2

The equivariant Euler classes of the normal bundles are the same as those of Γ1 and Γ2 for

< pt, β6 >0,2,β2+β3 , or

eC∗(Nvir
Γ1

) = λ3µ(λ+ µ)2, eC∗(Nvir
Γ2

) = −λ3µ2(λ+ µ).

So

< pt, β8 >0,2,β2+β3=
−λ2µ(λ+ µ)λ(λ+ µ)

λ3µ(λ+ µ)2
+
−λ2µ(λ+ µ)λµ
−λ3µ2(λ+ µ)

=0.

If we take the point AD for point class and the point B in the standard representative for β9,

then we see < pt, β9 >0,2,β= 0 when d 6= 2. When d = 2, there are nonzero terms in the localization

formula from the connected components described by the graphs:

s c1 1BD

2
CD

1
ADs
Γ1

ss AD

1
AB

2
1

Γ2
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Γ1 is the same as for Γ3 for < pt, β6 >0,2,β2+β3 and its equivariant normal bundle has been

worked out, i.e. eC∗(Nvir
Γ1

) = −λ3µ2(λ+ µ).

For Γ2, eC∗(Bm
1 ) = 1, eC∗(Bm

4 ) = 1. By equivariant K-theoretic localization formula,

χ(f∗TF [2]) =
tλ + tµ + tλ + t−µ

1− t−λ
+
tλ + tµ + t−λ + t−λ−µ

1− tλ

= 2tλ + t−λ + t−µ + tµ + t−λ−µ + 1.

From this we have

eC∗(Nvir
Γ2

) = −λ3µ2(λ+ µ).

So by localization formula,

< pt, β9 >0,2,β2+β3=
−λ2µ(λ+ µ)λµ
−λ3µ2(λ+ µ)

+
−λ2µ(λ+ µ)λµ
−λ3µ2(λ+ µ)

= 2.

Here the invariants < pt, β5 >0,2,β, < pt, β7 >0,2,β, when β = dβ1 + (β2−β1) + (β3−β1) are not

treated because the method does not apply. We will take on these in the last chapter.

For the pairs (d2; d3) = (3; 0); (1; 1), the second type decomposition 3 + 3 is dealt with in the

following

Proposition 4.4.5. (i) For β = dβ1 + 3(β2 − β1),

< βi, βj >0,2,β= 0,

for i, j = 1, 2, 3 and any d;

(ii) For β = dβ1 + (β2 − β1) + (β3 − β1),

< β1, β2 >0,2,β= 0,
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for any d and

< β2, β2 >0,2,β=< β2, β3 >0,2,β= 0,

for any d 6= 2 but when d = 2, < β2, β2 >0,2,β= −1, < β2, β3 >0,2,β= 1.

Proof. (i) Let’s first consider the case β = dβ1 + 3(β2 − β1). If we take the invariant line between

B1 and B2 for the representative of β1, it stays away from any tree of invariant lines of sum degree

β. So < β1, βj >0,2,β= 0 for j = 1, 2, 3.

If we take the invariant line between AB and BC for one representative of β2 and the invariant

line between AD and CD for another representative of β2, then the pair of representatives do not

touch any tree of invariant lines of sum degree β simultaneously. So we have < β2, β2 >0,2,β= 0.

If we still take the invariant line between AB and BC for the representative of β2 and the

invariant line between AD and BD for the representative of β3, then for the same reason, we have

< β2, β3 >0,2,β= 0.

If we take the invariant line between BC and BD for one representative of β3 and the invariant

line between AC and AD for another representative of β3, then the pair of representatives does not

intersect any tree of invariant lines of sum degree β simultaneously. So we have < β3, β3 >0,2,β= 0.

(ii) Then we consider the case when β = dβ1 + (β2 − β1) + (β3 − β1).

If we take the invariant line between B1 and B2 for the representative of β1, the invariant line

between AD and CD for the representative of β2, then we see that < β1, β2 >0,2,β= 0.

When d 6= 2, we take the invariant lines between AB and BC and between AD and CD for

two representatives of β2 and the invariant line between AD and BD for the representative of β3,

then we see that < β2, β2 >0,2,β=< β2, β3 >0,2,β= 0.

Let’s assume d = 2 in the following. We first compute < β2, β2 >0,2,β2+β3 . The nonzero terms

in the localization formula are contributed from the fixed components described by the graphs:

s sAB

1
AD

2
1

Γ1

ss CD

2
BC

1
1

Γ2
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For Γ1, eC∗(Bm
1 ) = 1, eC∗(Bm

4 ) = 1, and

χ(f∗TF [2]) =
tλ + tµ + tλ + t−µ

1− t−λ
+
tλ + tµ + t−λ + t−λ−µ

1− tλ

= 2tλ + t−λ + t−µ + tµ + t−λ−µ + 1.

So

eC∗(Nvir
Γ1

) = −λ3µ2(λ+ µ).

For Γ2, again eC∗(Bm
1 ) = 1, eC∗(Bm

4 ) = 1.

χ(f∗TF [2]) =
tλ + t−µ + t−λ + tλ+µ

1− t−λ
+
t−λ + tλ+µ + t−λ + t−λ−µ

1− tλ

= tλ + 2t−λ + t−µ + t−λ−µ + tλ+µ + 1.

From this we have

eC∗(Nvir
Γ2

) = λ3µ(λ+ µ)2.

Using localization,

< β2, β2 >0,2,β2+β3=
−λµ2λµ(λ+ µ)
−λ3µ2(λ+ µ)

+
−λµ(λ+ µ)λ(λ+ µ)2

λ3µ(λ+ µ)2

=− 1.

To compute < β2, β3 >0,2,β2+β3 , we take the invariant lines between AB and BC for β2, the

invariant lines between AD and BD for β3. Three nonzero terms appear in the localization formula

described by the graphs:

s sAB

1
AD

2
1

Γ1

cs AB

1
BD

2
1 sBC 1

Γ2
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s s1 1BD

2
AB

1
BCc
Γ3

The Euler classes of the virtual normal bundles of these components have been worked out

above:

eC∗(Nvir
Γ1

) = −λ3µ2(λ+ µ),

eC∗(Nvir
Γ2

) = λ3µ(λ+ µ)2,

eC∗(Nvir
Γ3

) = −λ3µ2(λ+ µ).

So

< β2, β3 >0,2,β2+β3=
−λµ2λ2(λ+ µ)
−λ3µ2(λ+ µ)

+
−λµ(λ+ µ)λ2(λ+ µ)

λ3µ(λ+ µ)2
+
λ2(λ+ µ)(−λ)µ2

−λ3µ2(λ+ µ)

=1.

For β = dβ1 + (β2 − β1) + (β3 − β1), < β1, β1 >,< β1, β3 > and < β3, β3 > are not computable

by this method. We’ll take on this problem in the next chapter.

For the pairs (d2, d3) = (2, 0), (0, 1), the virtual dimension of the moduli space is equal to 5,

which can be decomposed as either 1 + 4 or 2 + 3 . When the degree decomposition is 1 + 4, we

must have one insertion to be a point class.

Proposition 4.4.6. (i) For β = dβ1 + 2(β2 − β1),

< pt, βj >0,2,β= 0,

for j = 10, 11, 12 and any d;

(ii) For β = dβ1 + (β3 − β1),

< pt, βj >0,2,β= 0,
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for j = 10, 11, 12 and any d 6= 1; when d = 1,

< pt, β10 >0,2,β3= 0, < pt, β11 >0,2,β3= 2, < pt, β12 >0,2,β3= 0.

Proof. By Axiom of Divisors,

< pt, βj >0,2,β=
∫
β
βj < pt >0,1,β .

So when β = dβ1+2(β2−β1) for any d and when β = dβ1+(β3−β1) for any d 6= 1, < pt, βj >0,2,β= 0

since < pt >0,1,β= 0 by Proposition 4.3.1

When β = β3,

< pt, β10 >0,2,β3=
∫
β3

β10 < pt >0,1,β3= 0,

because the intersection product of β3 and β10 is 0,

< pt, β11 >0,2,β3=
∫
β3

β11 < pt >0,1,β3= 1 · 2 = 2,

< pt, β12 >0,2,β3=
∫
β3

β12 < pt >0,1,β3= 0,

because the intersection product of β3 with β11 and β12 are 1 and 0 respectively.

The other degree decomposition is 2 + 3.

Proposition 4.4.7. (i) For β = dβ1 + 2(β2 − β1),

< βi, βj >0,2,β= 0,

for i = 1, 2, 3, j = 4, · · · , 9 and any d;

(ii) For β = dβ1 + (β3 − β1),

< β1, βj >0,2,β= 0 for j = 5, 7, 8, 9 and all d;

< β2, βj >0,2,β= 0 for j = 5, 7 and all d; < β2, βj >0,2,β= 0 for j = 8, 9 and d 6= 1, and

< β2, β8 >0,2,β3=< β2, β9 >0,2,β3= 1;
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< β3, βj >0,2,β= 0 for j = 4, 5, 7, 8, 9 and all d; < β3, β6 >0,2,β= 0 for d 6= 1, and <

β3, β6 >0,2,β3= 2.

Proof. (i) If we take the invariant line between B1 and B2 as the representative for β1 and the

standard representatives of βj , where we make free choices for f ’s and pt’s, then we see that

< β1, βj >0,2,β= 0 for j = 4, · · · , 9 and any d.

If we take the invariant line betweenAB andBC as the representative for β2, then< β2, βj >0,2,β=

0 for j = 4, 5, 8, 9 and any d, where in the standard representatives of β5, β8 and β9, we take f to

be f∞ and pt to be the point D. Also < β2, β6 >0,2,β=< β2, β7 >0,2,β= 0, when d 6= 2.

So we need to consider the cases when d = 2. For < β2, β6 >0,2,2β2 , there are nonzero terms in

the localization formula from the fixed point loci described by the graphs:

s sAB

1
BC

2
2

Γ1

ss BC

1
AB

2
2

Γ2

s cAB

1,2
BC2

Γ3

sc BC

1,2
AB 2

Γ4s c1 1AB

1
AB

2
BCs
Γ5

cs AB

1
AB

2
1 sBC 1

Γ6s s1 1AB

1
AB

2
BCc
Γ7

cs AB

1,2
AB 1 cBC

Γ8c c1 1AB AB

1,2
BCs
Γ9

ss BC

1
BC 11 cAB

2
Γ10s c1 1BC

1
BC

2
ABs
Γ11

cs BC

1
BC

2
1 sAB 1

Γ12s c1 1BC

1,2
BCABc

Γ13

cc BC

1,2
BC 1 sAB 1

Γ14

Here we only work out the equivariant Euler classes of the normal bundles for Γ1 and Γ9. The

Euler classes of the normal bundles of all other components can be computed either similarly or as

before.

For Γ1, eC∗(Bm
1 ) = 1, eC∗(Bm

4 ) = 1. Since the induced action on the invariant line from AB to
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BC has weights 1
2λ,−

1
2λ at the two end by Lemma 4.2.2, using equivariant K-theoretic localization,

we have

χ(f∗TF [2]) =
tλ + tµ + tλ + t−µ

1− t−
1
2
λ

+
tλ + t−µ + t−λ + tλ+µ

1− t
1
2
λ

= tλ + t−λ + t−µ + t
1
2
λ + t−

1
2
λ − t

1
2
λ+µ + 1.

From this we have

eC∗(Nvir
Γ1

) = −1
2

λ5µ

λ+ 2µ
.

For Γ9, eC∗(Bm
1 ) = λ2, eC∗(Bm

4 ) = (−λ− e3)(−λ− e4) = (λ+ e3)(λ+ e4), where e3, e4 are the

Euler classes of the respective cotangent line bundles over M0,4, which correspond to the nodal

points of the component represented by the vertex BC with the components represented by two

edges from AB to BC. By equivariant K-theoretic localization and using normalization sequence

as before we have

χ(f∗TF [2]) = 3tλ + t−λ + t−µ − tλ+µ + 2.

So

eC∗(Nvir
Γ9

) =
λ2µ(λ+ e3)(λ+ e4)

λ+ µ
.
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All the equivariant Euler classes of the normal bundles are listed as follows:

eC∗(Nvir
Γ1

) = −1
2

λ5µ

λ+ 2µ
, eC∗(Nvir

Γ2
) = −1

2
λ5µ

λ+ 2µ
,

eC∗(Nvir
Γ3

) =
1
2

λ5µ

λ+ 2µ
, eC∗(Nvir

Γ4
) =

1
2

λ5µ

λ+ 2µ
,

eC∗(Nvir
Γ5

) =
λ5µ

λ+ µ
, eC∗(Nvir

Γ6
) =

λ5µ

λ+ µ
,

eC∗(Nvir
Γ7

) = −2
λ5µ

λ+ µ
, eC∗(Nvir

Γ8
) = −2

λ5µ

λ+ µ
,

eC∗(Nvir
Γ9

) =
λ2µ(λ+ e3)(λ+ e4)

λ+ µ
, eC∗(Nvir

Γ10
) = −2λ5,

eC∗(Nvir
Γ11

) = λ5, eC∗(Nvir
Γ12

) = λ5,

eC∗(Nvir
Γ13

) = −2λ5, eC∗(Nvir
Γ14

) = −λ2(λ− e3)(λ− e4).

Using localization formula, we have

< β2, β6 >0,1,2β2=− 2
λµ3(λ+ µ)(λ+ 2µ)

λ5µ
+
λµ4(λ+ 2µ)

λ5µ
+
λµ2(λ+ µ)2(λ+ 2µ)

λ5µ

+
λµ3(λ+ µ)2

λ5µ
+
λµ3(λ+ µ)2

λ5µ
+
λµ4(λ+ µ)
−2λ5µ

+
λµ4(λ+ µ)
−2λ5µ

+
1
2

∫
M0,4

λµ2(λ+ µ)3

λ2µ(λ+ e3)(λ+ e4)
+
λµ2(λ+ µ)2

−2λ5
+
λµ3(λ+ µ)

λ5

+
λµ3(λ+ µ)

λ5
+
λµ2(λ+ µ)2

−2λ5
− 1

2

∫
M0,4

λµ4

λ2(λ− e3)(λ− e4)

= 0,

where the factor 2 in front of the first term in the sum takes care of terms from Γ1 and Γ2. Here

we used the fact that
∫
M0,4

e3 =
∫
M0,4

e4 = 1.

Let’s turn to < β2, β7 >0,2,2β2 . We still take the invariant line between AB and BC for β2. The

nonzero terms in the localization formula from the fixed point loci are described by the graphs:

s c1 1AB

1
AB

2
BCs
Γ1

cc AB

1,2
AB 1 sBC 1

Γ2

s c1 1BC

1,2
BCABc

Γ3

ss BC

1
BC 11 cAB

2
Γ4

68



s sAB

1
BC

2
2

Γ5

cs BC

1
BC

2
1 sAB 1

Γ6c sAB BC

1,2
2

Γ7

The equivariant Euler classes of their virtual normal bundles have all been worked out before,

so we just list them below:

eC∗(Nvir
Γ1

) =
λ5µ

λ+ µ
, eC∗(Nvir

Γ2
) =

λ2µ(λ+ e3)(λ+ e4)
λ+ µ

,

eC∗(Nvir
Γ3

) = eC∗(Nvir
Γ4

) = −2λ5, eC∗(Nvir
Γ5

) = −1
2

λ5µ

λ+ 2µ
,

eC∗(Nvir
Γ6

) = λ5, eC∗(Nvir
Γ7

) =
1
2

λ5µ

λ+ 2µ
,

where e3, e4 are the Euler classes of the respective cotangent line bundles over M0,4 explained

above. So by localization formula,

< β2, β7 >0,2,2β2=
−λµ2(−λ2)(λ+ µ)

λ5µ
+

1
2

∫
M0,4

−λµ(λ+ µ)(−λ2)(λ+ µ)
λ2µ(λ+ e3)(λ+ e4)

+
−λµ(λ+ µ)(−λ2)

−2λ5
+
−λµ(λ+ µ)(−λ2)

−2λ5
− −λµ

2(−λ2)(λ+ 2µ)
λ5µ

+
−λµ2(−λ2)

λ5
+
−λµ(λ+ µ)(−λ2)(λ+ 2µ)

λ5µ

=0.

If we take the invariant line between BC and BD for β3 and the standard representatives for

β4, β5 and β8, where we take f to be f∞, then < β3, βj >0,2,β= 0, for j = 4, 5, 8 and any d; if we

take the invariant line between AC and BC for β3 and the standard representative for β9 where

we assign D to pt, then we see < β3, β9 >0,2,β= 0. Now we keep the invariant line between BC

and BD for β3. It’s not hard to see < β3, β6 >0,2,β=< β3, β7 >0,2,β= 0, when d 6= 2.

When d = 2, for < β3, β6 >0,2,β, the nonzero terms in the localization formula from the fixed
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point loci are described by the graphs:

c c1 1AB AB

1,2
BCs
Γ1

cs AB

1
AB

2
1 sBC 1

Γ2

s c1 1BC

1,2
BCABc

Γ3

ss BC

1
BC 11 cAB

2
Γ4s c1 1BC

1
BCABs

Γ5

2
sc BC

1,2
AB 2

Γ6s sAB

2
BC

1
Γ7

2

Again the equivariant Euler classes of their virtual normal bundles have all been worked out

before.

eC∗(Nvir
Γ1

) =
λ2µ(λ+ e3)(λ+ e4)

λ+ µ
, eC∗(Nvir

Γ2
) =

λ5µ

λ+ µ
,

eC∗(Nvir
Γ3

) = eC∗(Nvir
Γ4

) = −2λ5, eC∗(Nvir
Γ5

) = λ5,

eC∗(Nvir
Γ6

) =
1
2

λ5µ

λ+ 2µ
, eC∗(Nvir

Γ7
) = −1

2
λ5µ

λ+ 2µ
,

where e3, e4 are the Euler classes of the respective cotangent line bundles over M0,4. So by local-

ization formula,

< β3, β6 >0,2,2β2=
1
2

∫
M0,4

−λ2µ2(λ+ µ)2

λ2µ(λ+ e3)(λ+ e4)
+
−λ2µ3(λ+ µ)

λ5µ

+
−λ2µ2(λ+ µ)
−2λ5

+
−λ2µ2(λ+ µ)
−2λ5

+
−λ2µ3

λ5

+
−λ2µ2(λ+ µ)(λ+ 2µ)

λ5µ
− −λ

2µ3(λ+ 2µ)
λ5µ

=0.

For < β3, β7 >0,2,2β2 , we keep the representative for β3. Then the connected components with
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nonzero terms in the localization formula are described by the graphs:

c c1 1AB AB

1,2
BCs
Γ1

ss BC

1
BC 11 cAB

2
Γ2

s c1 1BC

1,2
BCABc

Γ3

sc BC

1,2
AB 2

Γ4

Their equivariant Euler classes are listed above.

eC∗(Nvir
Γ1

) =
λ2µ(λ+ e3)(λ+ e4)

λ+ µ
, eC∗(Nvir

Γ2
) = −2λ5,

eC∗(Nvir
Γ3

) = −2λ5, eC∗(Nvir
Γ4

) =
1
2

λ5µ

λ+ 2µ
,

where e3, e4 are the Euler classes of the respective cotangent line bundles over M0,4. Substituting

them in the localization formula, we get

< β3, β7 >0,2,2β2=
1
2

∫
M0,4

−λ4µ(λ+ µ)
λ2µ(λ+ e3)(λ+ e4)

+
−λ4µ

−2λ5

+
−λ4µ

−2λ5
+
−λ4µ(λ+ 2µ)

λ5µ
= 0.

(ii) When β = dβ1 + (β3 − β1), we take the invariant line between C1 and C2 for β1 and

the standard representatives for βj , where we take f to be f0 and pt to be A, then we see <

β1, βj >0,2,β= 0 for j = 5, 7, 8, 9 and any d.

Also, if we take the invariant line between AD and CD for β2 and the standard representative

for β5, where f is taken to be f0, then < β2, β5 >0,2,β= 0 for any d.

Now we take the invariant line fromAB toBC for the representative for β2. Then< β2, β7 >0,2,β=

0 if d 6= 1. When d = 1, the nonzero terms appearing in the localization formula are given by the

connected components described by the following graphs:

s sBC

1
AC

2
1

Γ1

cs ACBC

1,2
1

Γ2
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s sBC

1
BD

2
1

Γ3

cs BDBC

1,2
1

Γ4

We have

eC∗(Nvir
Γ1

) = λ2µ2(λ+ µ), eC∗(Nvir
Γ2

) = −λ2µ2(λ+ µ),

eC∗(Nvir
Γ3

) = −λ2µ(λ+ µ)2, eC∗(Nvir
Γ4

)) = λ2µ(λ+ µ)2.

So

< β2, β7 >0,2,β=
−λµ(λ+ µ)(−λ2)
λ2µ2(λ+ µ)

+
−λµ(λ+ µ)(−λ2)
−λ2µ2(λ+ µ)

+
−λµ(λ+ µ)(−λ2)
−λ2µ(λ+ µ)2

+
−λµ(λ+ µ)(−λ2)
λ2µ(λ+ µ)2

=0.

To compute < β2, β8 >0,2,β, we still take the invariant line from AB to BC for the representative

for β2 and the standard representative for β8, where f is taken to be f∞. Then we see that

< β2, β8 >0,2,β= 0 if d 6= 1. When d = 1, there is only one nonzero term in the localization from

the component described by the graph

s sAC

2
BC

1
1

Γ

It’s equivariant normal bundle is

eC∗(Nvir
Γ ) = λ2µ2(λ+ µ).

So

< β2, β8 >0,2,β=
−λµ(λ+ µ)(−λµ)

λ2µ2(λ+ µ)
= 1.
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To compute < β2, β9 >0,2,β, we still take the invariant line from AB to BC for the representative

for β2 and the standard representative for β9, where pt is taken to be D. Then we see that

< β2, β9 >0,2,β= 0 if d 6= 1. When d = 1, there is only one nonzero term in the localization formula

given by the connected component described the graph:

s sBC

1
BD

2
1

Γ

eC∗(Nvir
Γ ) = −λ2µ(λ+ µ)2, so

< β2, β9 >0,2,β=
−λµ(λ+ µ)λ(λ+ µ)
−λ2µ(λ+ µ)2

= 1.

If we take the invariant line between BC and BD for β3, we see < β3, βj >0,2,β= 0, for j = 4, 5

and all d, where we can take either f0 or f∞ for f in the representative of β5.

Now we fix the representative for β3 to be the invariant line between BC and BD. Then

< β3, β6 >0,2,β= 0 for all d 6= 1. For d = 1, there are nonzero terms in the localization from the

connected components described by the graphs:

s sBC

2
BD

1
1

Γ1

cs BDBC

1,2
1

Γ2

s sAD

2
BD

1
1

Γ3

cs ACBC

1,2
1

Γ4

We have

eC∗(Nvir
Γ1

) = −λ2µ(λ+ µ)2, eC∗(Nvir
Γ2

) = λ2µ(λ+ µ)2,

eC∗(Nvir
Γ3

) = −λ2µ2(λ+ µ), eC∗(Nvir
Γ4

) = −λ2µ2(λ+ µ),
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So

< β3, β6 >0,2,β=
−λ2µ2(λ+ µ)
−λ2µ(λ+ µ)2

+
−λ2µ2(λ+ µ)
λ2µ(λ+ µ)2

+
−λ2µ2(λ+ µ)
−λ2µ2(λ+ µ)

+
−λ2µµ(λ+ µ)
−λ2µ2(λ+ µ)

=2.

To compute < β3, βj >0,2,β for j = 7, 8, 9, we take the invariant line from CD to D2 for β3−β1

and the standard representatives for βj , where f is taken to be f0 and pt to be B. Then we see

that

< β3 − β1, βj >0,2,β= 0

for any d. But < β1, βj >0,2,β= 0, so < β3, βj >0,2,β= 0 for j = 7, 8, 9.

In this proposition, four sequences of invariants are not treated, which are < β1, β4 >0,2,β, <

β2, β4 >0,2,β, < β1, β6 >0,2,β and < β2, β6 >0,2,β for β = dβ1 +(β3−β1), because they involve higher

degrees on β1. They will be determined in the next chapter.

For the last pair (d2, d3) = (1, 0), the virtual dimension of the moduli space is equal to 4. The

degree decomposition of the two insertions has to be 1 + 3, or 2 + 2. For the first type, we have

Proposition 4.4.8. For β = dβ1 + (β2 − β1),

(i) < β1, βj >0,2,β= 0, for j = 10, 11, 12 and all d;

(ii) < βi, βj >0,2,β= 0, for i = 2, 3, j = 10, 11, 12 and d 6= 1; when d = 1,

< β2, β10 >0,2,β2= 0, < β2, β11 >0,2,β2= 1, < β2, β12 >0,2,β2= −1;

< β3, β10 >0,2,β2= 0, < β3, β11 >0,2,β2= −1, < β3, β12 >0,2,β2= 1.

Proof. By Axiom of Divisors and recalling Proposition 3.3.2, we only need to consider the cases

when d = 1. First,

< β2, β10 >0,2,β2=
∫
β2

β10 < β2 >0,1,β2= 0,
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because the intersection product of β2 and β10 is 0. Similarly,

< β2, β11 >0,2,β2=
∫
β2

β11 < β2 >0,1,β2= (−1)(−1) = 1,

< β2, β12 >0,2,β2=
∫
β2

β12 < β2 >0,1,β2= 1(−1) = −1,

< β3, β10 >0,2,β2=
∫
β2

β10 < β3 >0,1,β2= 0,

because the intersection product of β2 and β10 is 0. Similarly,

< β3, β11 >0,2,β2=
∫
β2

β11 < β3 >0,1,β2= (−1) · 1 = −1,

< β3, β12 >0,2,β2=
∫
β2

β12 < β3 >0,1,β2= 1 · 1 = 1.

Here we make use the intersection product table in §3.2.

When (d2, d3) = (1, 0), we have the second type of degree decomposition of the two insertions

2 + 2.

Proposition 4.4.9. For β = dβ1 + (β2 − β1), we have

(i) < β4, β6 >0,2,β=< β5, β6 >0,2,β= 0 for any d;

(ii) < β6, βk >0,2,β= 0 for k = 6, 7, 8 and d 6= 1, but < β6, β6 >0,2,β2= 1, < β6, β7 >0,2,β2=

−2, < β6, β8 >0,2,β2= 1;

(iii) < βk, β9 >0,2,β= 0 for k = 4, · · · , 9 and any d.

Proof. (i) If we take the standard representatives for β4, β5 and β6, where f is taken to be f0 for

β5, then we see that < β4, β6 >0,2,β=< β5, β6 >0,2,β= 0.

(ii) Also we can see when d 6= 1, < β6, β6 >0,2,β= 0. Now we compute < β6, β6 >0,2,β when

d = 1. There are eight nonzero terms in the localization formula from fixed point loci described by

the graphs:

s sAB

1
BC

2
1

Γ1

ss CD

1
AD

2
1

Γ2

s sAB

2
BC

1
1

Γ3

ss CD

2
AD

1
1

Γ475



s
1,2

dAB BC1

Γ5

cs
1,2

CDAD 1

Γ6c s
1,2

AB BC1

Γ7

sc CDAD 1
1,2

Γ8

Their equivariant Euler classes are

eC∗(Nvir
Γ1

) = eC∗(Nvir
Γ3

) = λ3µ, eC∗(Nvir
Γ2

) = eC∗(Nvir
Γ4

) = −λ3(λ+ µ),

eC∗(Nvir
Γ5

) = eC∗(Nvir
Γ7

) = −λ3µ, eC∗(Nvir
Γ6

) = eC∗(Nvir
Γ8

) = λ3(λ+ µ).

Applying localization formula, we get

< β6, β6 >0,2,β2=2
−µ2(−µ)(λ+ µ)

λ3µ
+ 2

µ(λ+ µ)(λ+ µ)2

−λ3(λ+ µ)
+

(−µ2)2

−λ3µ

+
(−µ(λ+ µ))2

λ3(λ+ µ)
+

(−µ(λ+ µ))2

−λ3µ
+

(−(λ+ µ)2)2

λ3(λ+ µ)

=1.

Using the standard representative for β7, we see when d 6= 1, < β6, β7 >0,2,β= 0. When d = 1,

nonzero terms in the localization formula are given by the fixed point locus described by the graphs:

s
1

s
2

AB BC1

Γ1

s
1

s
2

CDAD 1

Γ2

c sAB BC

1,2
1

Γ3

cs CDAD

1,2
1

Γ4

We have

eC∗(Nvir
Γ1

) = λ3µ, eC∗(Nvir
Γ2

) = −λ3(λ+ µ),

eC∗(Nvir
Γ3

) = −λ3µ, eC∗(Nvir
Γ4

) = λ3(λ+ µ).
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So

< β6, β7 >0,2,β2=
−µ2(−λ2)

λ3µ
+
−(λ+ µ)2(−λ2)
−λ3(λ+ µ)

+
λ2µ(λ+ µ)
−λ3µ

+
λ2µ(λ+ µ)
λ3(λ+ µ)

=− 2.

We take f0 for f in the representative for β8. Then when d 6= 1, < β6, β8 >0,2,β= 0. When

d = 1, there are nonzero terms in the localization formula from fixed point loci given by the graphs:

s
1

s
2

AB BC1

Γ1

s
1

s
2

BCAB 1

Γ2

c sAB BC

1,2
1

Γ3

cs BCAB

1,2
1

Γ4

We have

eC∗(Nvir
Γ1

) = eC∗(Nvir
Γ2

) = λ3µ, eC∗(Nvir
Γ3

) = eC∗(Nvir
Γ4

) = −λ3µ.

So

< β6, β8 >0,2,β=
−µ2λ(λ+ µ)

λ3µ
+
−µ(λ+ µ)λµ

λ3µ

+
−µ(λ+ µ)λ(λ+ µ)

−λ3µ
+
−µ2λµ

−λ3µ

=1.

(iii) If we use the above representative for β8 and the standard representative for β9, where pt

is taken to be D, then we see < β8, β9 >0,2,β= 0 for any d. If we take a different representative for

β9, where pt is taken to be B, then we see < β9, β9 >0,2,β= 0 for any d. Also, < β4, β9 >0,2,β=<

β5, β9 >0,2,β= 0 for any d, where we use f∞ for f and B for pt in the standard representatives for

β5, β9.
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We keep the representative for β9, where pt is taken to B. Then we see when d 6= 1,

< β6, β9 >0,2,β=< β7, β9 >0,2,β= 0. When d = 1, for < β6, β9 >0,2,β, the connected compo-

nents appearing as nonzero terms in the localization formula are the same as for < β6, β8 >0,2,β.

Everything has been worked out.

< β6, β9 >0,2,β=
−µ2(−λµ)

λ3µ
+
−µ(λ+ µ)(−λµ)

λ3µ

+
−µ(λ+ µ)(−λµ)

−λ3µ
+
−µ2(−λµ)
−λ3µ

=0.

For < β7, β9 >0,2,β, we have connected components

s
1,2

cBC AB1

Γ1

ss BC

1
AB

2
1

Γ2

The virtual normal bundles have been decided before, i.e.

eC∗(Nvir
Γ1

) = −λ3µ, eC∗(Nvir
Γ2

) = λ3µ,

so

< β7, β9 >0,2,β=
−λ2(−λµ)
−λ3µ

+
−λ2(−λµ)

λ3µ
= 0.

In the proof of this proposition, if we use the cycle P (TF [2]|S0) to define a new class in A2(F [2]),

denoted as γ, then we see < β5, γ >0,2,β=< γ, γ >0,2,β= 0. But it’s east to see γ = β4 + β5, so we

get < β4, β4 >0,2,β= − < β4, β5 >0,2,β=< β5, β5 >0,2,β. Also we have relations < γ, β7 >0,2,β=<

γ, β8 >0,2,β= 0, so < β4, β7 >0,2,β= − < β5, β7 >0,2,β and < β4, β8 >0,2,β= − < β5, β8 >0,2,β .

We’ll come back to these invariants together with < β4, β4 >0,2,β, < β4, β5 >0,2,β, < β5, β5 >0,2,β

and < β7, β7 >0,2,β, < β7, β8 >0,2,β, < β8, β8 >0,2,β in the next chapter.
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We could extend this method to compute three-pointed GW-invariants, but because of the

existence of higher dimensional families of invariant lines, we only succeed in calculating a small

number of them. In stead of carrying on this method for partial results, we are especially interested

in the three-pointed GW-invariants with β9 as two insertions for their usefulness in the computation

of quantum products.

4.5 Computations of Some Three-Point Gromov-Witten

Invariants

Since the virtual dimension of M0,3(F [2], β) is d2 + 2d3 + 4 for any curve class β = d1β1 + d2(β2 −

β1) + d3(β3 − β1), when two insertions are β9, we must have the third insertion to be of degree

4− (d2 + 2d3) as a Chow class. When (d2, d3) = (4, 0), (2, 1), (0, 2), this insertion must be a point

class; when (d2, d3) = (3, 0), (1, 1), it is of degree 1; when (d2, d3) = (2, 0), (0, 1), it is of degree 2;

finally, when (d2, d3) = (1, 0), it is of degree 3. We study them case by case in this section.

First the case when (d2, d3) = (4, 0), (2, 1), (0, 2) is treated in the following

Proposition 4.5.1. For β = dβ1 + 4(β2 − β1), dβ1 + 2(β2 − β1) + (β3 − β1), and dβ1 + 2(β3 − β1)

for any d,

< pt, β9, β9 >β= 0.

Proof. For β9 in the second and third insertions, we take the standard representative, where pt is

taken to be B and D respectively.

For β = dβ1 + 4(β2 − β1), if we take the point BD for the point class, then < pt, β9, β9 >β= 0.

If we take the point D1 for the point class, then we see that < pt, β9, β9 >β= 0, for β =

dβ1 + 2(β2 − β1) + (β3 − β1), dβ1 + 2(β3 − β1).

For the pair (d2, d3) = (3, 0), we have

Proposition 4.5.2. For β = dβ1 + 3(β2 − β1),

< βi, β9, β9 >β= 0,

for i = 1, 2, 3 and any d.

79



Proof. We keep the two representatives for β9 and choose the line from A1 to A2 for β1, the line

from AB to BC for β2, the line from AC to BC for β3. Then the result follows.

For the pair (d2, d3) = (1, 1), we have

Proposition 4.5.3. For β = dβ1 + (β2 − β1) + (β3 − β1),

< β1, β9, β9 >β=< β2, β9, β9 >β= 0 for any d,

< β3, β9, β9 >β= 0, when d 6= 2; < β3, β9, β9 >β2+β3= 1.

Proof. If we choose the invariant line from A1 to A2 for β1, then < β1, β9, β9 >β= 0.

If we choose the invariant line from A1 to AC for the representative of β2 − β1, then we see

< β2 − β1, β9, β9 >β= 0, so < β2, β9, β9 >β= 0 from above.

To compute < β3, β9, β9 >β, we take the line from BC to AC for β3. Then < β3, β9, β9 >β=

0 when d 6= 2. When d = 2, there are nonzero terms in the localization from the connected

components represented by the graphs:

s sBC

3
CD

1,2
1

Γ1

s
2

s AB

3
BD sBC

1
Γ2

s c1 1BD AB

2,3
BCs
1
Γ3

cs
3

AB

1,2
BD 11 sBC

Γ4

Their equivariant Euler classes are

eC∗(Nvir
Γ1

) = λ4µ(λ+ µ)2, eC∗(Nvir
Γ2

) = λ4µ(λ+ µ)2,

eC∗(Nvir
Γ3

) = −λ3µ(λ+ µ)3, eC∗(Nvir
Γ4

) = λ2µ(λ+ µ)(λ+ µ− e3)(λ+ e4).

where e3, e4 are the Euler classes of the respective cotangent line bundles overM0,4 corresponding to

the nodal points of the component represented by the vertex BC with the components represented
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by edges from BC to BD and from BC to AB. So

< β3, β9, β9 >β2+β3 =
−λ2(λ+ µ)(−λµ)λ(λ+ µ)

λ4µ(λ+ µ)2

+
−λ2(λ+ µ)(−λµ)λ(λ+ µ)

λ4µ(λ+ µ)2
+
−λ2(λ+ µ)(−λµ)λ(λ+ µ)

−λ3µ(λ+ µ)3

+
∫
M0,4

−λ2(λ+ µ)(−λµ)λ(λ+ µ)
λ2µ(λ+ µ)(λ+ µ− e3)(λ+ e4)

= 1.

Here we used the fact that
∫
M0,4

e3 =
∫
M0,4

e4 = 1.

The case when (d2, d3) = (2, 0) is studied in the following

Proposition 4.5.4. For β = dβ1 + 2(β2 − β1),

< βk, β9, β9 >β= 0,

for k = 4, · · · , 9 and any d.

Proof. We still use the two representatives for β9 as above and take the standard representatives

for the classes β4, · · · , β9, where we take f to be f0 and pt to be B. Then there is no nodal curve

connecting the three cycles of the class β. So the GW-invariants are trivial.

The case when (d2, d3) = (0, 1) is studied in the following

Proposition 4.5.5. For β = dβ1 + (β3 − β1),

< βk, β9, β9 >β= 0,

for k = 4, · · · , 9 and any d.

Proof. We keep the standard representatives for the classes β4, · · · , β9 as in the proof of the previous

proposition. Then it is easy to see that < β4, β9, β9 >β=< β5, β9, β9 >β= 0 for any d.

When d 6= 1, < β6, β9, β9 >β= 0. For < β6, β9, β9 >β3 , there are four connected components

81



represented by the graphs:

s
1

s
2,3

BC BD1

Γ1

s
2,3

s
1

BDAD 1

Γ2

s
1,2

sBC BD

3
1

Γ3

ss BD

2
AD

1,3
1

Γ4

Their equivariant Euler classes are

eC∗(Nvir
Γ1

) = λ2µ(λ+ µ)3, eC∗(Nvir
Γ2

) = λ2µ3(λ+ µ),

eC∗(Nvir
Γ3

) = −λ2µ(λ+ µ)3, eC∗(Nvir
Γ4

) = −λ2µ3(λ+ µ).

So

< β6, β9, β9 >β3=
−µ(λ+ µ)(−λµ)λ(λ+ µ)

λ2µ(λ+ µ)3
+
−µ(λ+ µ)(−λµ)λ(λ+ µ)

λ2µ3(λ+ µ)

+
−µ(λ+ µ)(−λµ)λ(λ+ µ)

−λ2µ(λ+ µ)3
+
−µ(λ+ µ)(−λµ)λ(λ+ µ)

−λ2µ3(λ+ µ)

=0.

Again when d 6= 1, < β7, β9, β9 >β= 0. When d = 1, there are eight connected components

represented by the graphs in the localization:

s
1

s
2,3

BC BD1

Γ1

s
3

s
1,2

BDBC 1

Γ2

s
2

sBC BD

1,3
1

Γ3

sc BD

1,2,3
BC 1

Γ4s
3

s
1,2

AD BD1

Γ5

s
2,3

s
1

BDAD 1

Γ6s
1,3

sAD BD

2
1

Γ7

sc BD

1,2,3
AD 1

Γ8
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Their equivariant Euler classes are

eC∗(Nvir
Γ1

) = λ2µ(λ+ µ)3, eC∗(Nvir
Γ2

) = −λ2µ(λ+ µ)3,

eC∗(Nvir
Γ3

) = λ2µ(λ+ µ)3, eC∗(Nvir
Γ4

) = λ2µ(λ+ µ)(λ+ µ+ e4),

eC∗(Nvir
Γ5

) = λ2µ3(λ+ µ), eC∗(Nvir
Γ6

) = λ2µ3(λ+ µ),

eC∗(Nvir
Γ7

) = −λ2µ3(λ+ µ), eC∗(Nvir
Γ8

) = λ2µ(λ+ µ)(µ+ e4),

where e4 in eC∗(Nvir
Γ4

) is the Euler class of the cotangent line bundle over M0,4 corresponding to

the nodal point of the component represented by the vertex BD with the component represented

by the edge from BD to BC and where e4 in eC∗(Nvir
Γ8

) is that corresponding to the nodal point

of the component represented by the vertex BD with the component represented by the edge from

BD to AD. So

< β7, β9, β9 >β3=
−λ2(−λµ)λ(λ+ µ)

λ2µ(λ+ µ)3
+
−λ2(−λµ)λ(λ+ µ)
−λ2µ(λ+ µ)3

+
−λ2(−λµ)λ(λ+ µ)

λ2µ(λ+ µ)3
+

∫
M0,4

−λ2(−λµ)λ(λ+ µ)
λ2µ(λ+ µ)(λ+ µ+ e4)

+
−λ2(−λµ)λ(λ+ µ)

λ2µ3(λ+ µ)
+
−λ2(−λµ)λ(λ+ µ)

λ2µ3(λ+ µ)

+
−λ2(−λµ)λ(λ+ µ)
−λ2µ3(λ+ µ)

+
∫
M0,4

−λ2(−λµ)λ(λ+ µ)
λ2µ(λ+ µ)(µ+ e4)

=0.

When d 6= 1, < β8, β9, β9 >β= 0. When d = 1, there are two connected components represented

by the graphs in the localization:

s
1

s
2,3

BC BD1

Γ1

s
3

s
1,2

BDBC 1

Γ2

Their equivariant Euler classes are

eC∗(Nvir
Γ1

) = λ2µ(λ+ µ)3, eC∗(Nvir
Γ2

) = −λ2µ(λ+ µ)3.
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So

< β8, β9, β9 >β3=
λ(λ+ µ)(−λµ)λ(λ+ µ)

λ2µ(λ+ µ)3
+
λ(λ+ µ)(−λµ)λ(λ+ µ)

−λ2µ(λ+ µ)3

=0.

We recall that we take pt to be B for the representatives of the first two β9 and D for the

representative of the third β9. When d 6= 1, < β9, β9, β9 >β= 0. When d = 1, there are nonzero

terms in the localization from the connected components represented by the graphs:

s
1

s
2,3

BC BD1

Γ1

s
3

s
1,2

BDBC 1

Γ2

s
2

sBC BD

1,3
1

Γ3

sc BD

1,2,3
BC 1

Γ4s
3

s
1,2

AD BD1

Γ5

s
1,2,3

c BDAD 1

Γ6

Their equivariant Euler classes are

eC∗(Nvir
Γ1

) = λ2µ(λ+ µ)3, eC∗(Nvir
Γ2

) = −λ2µ(λ+ µ)3,

eC∗(Nvir
Γ3

) = λ2µ(λ+ µ)3, eC∗(Nvir
Γ4

) = λ2µ(λ+ µ)(λ+ µ+ e4),

eC∗(Nvir
Γ5

) = λ2µ3(λ+ µ), eC∗(Nvir
Γ6

) = λ2µ(λ+ µ)(µ+ e4),

where e4 in eC∗(Nvir
Γ4

) is the Euler class of the cotangent line bundle over M0,4 corresponding to

the nodal point of the component represented by the vertex BD with the component represented

by the edge from BD to BC and where e4 in eC∗(Nvir
Γ6

) is that corresponding to the nodal point

of the component represented by the vertex BD with the component represented by the edge from
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BD to AD. So

< β9, β9, β9 >β3=
(−λµ)2λ(λ+ µ)
λ2µ(λ+ µ)3

+
(−λµ)2λ(λ+ µ)
−λ2µ(λ+ µ)3

+
(−λµ)2λ(λ+ µ)
λ2µ(λ+ µ)3

+
∫
M0,4

(−λµ)2λ(λ+ µ)
λ2µ(λ+ µ)(λ+ µ+ e4)

+
(−λµ)2λ(λ+ µ)
λ2µ3(λ+ µ)

+
∫
M0,4

(−λµ)2λ(λ+ µ)
λ2µ(λ+ µ)(µ+ e4)

=0.

Finally, when (d2, d3) = (1, 0), we have the following

Proposition 4.5.6. For β = dβ1 + (β2 − β1),

< βj , β9, β9 >β= 0,

for j = 10, 11, 12 and any d.

Proof. By Axiom of Divisors,

< βj , β9, β9 >β=
∫
β
βj < β9, β9 >β .

These invariants all vanish since < β9, β9 >β vanishes by Proposition 4.4.9.
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Chapter 5

Quantum Cohomology Ring

In this chapter, we come to the last step toward our goal, which is the determination of quantum

cohomology ring structure of the Hilbert scheme. For this purpose, sufficiently many products of

basis elements have to be calculated. From the results in the previous chapter, quantum products

of generators can be decided, which is the topic of the first section.

5.1 Some Quantum Products

We have determined a presentation of the Chow ring H∗(F [2]) generated by β9, β10, β11, β12 with

the relations:

P1 : β2
10 − 2β10β11 − 3β10β12 + 2β2

12 + 4β11β12 = 0,

P2 : β10β
2
12 = 0,

P3 : β3
12 = 0,

P4 : β11β
2
12 − 2β9β12 = 0,

P5 : β10β
2
11 + 2β9β10 = 0,

P6 : β10β11β12 − 2β9β10 = 0,

P7 : β2
11β12 − 2β9β11 + β9β12 = 0,

P8 : β3
11 + 3β9β11 = 0,

P9 : β9β11β12 − β2
9 = 0.

86



The dual basis of our standard basis β0, β1, · · · , β12, β13 is

β13, −
1
2
β10, β12, β11 + β12, −

1
2
β5, −

1
2
β4 −

1
2
β5,

1
2
β7,

1
2
β6 +

1
2
β7 +

1
2
β8,

1
2
β7 + β8, β9, −

1
2
β1, β3, β2 + β3, β0.

With the computational results in §4.3 and §4.4, quantum products from β10, β11, β12 can be

computed. First, by definition,

β10 ∗ β10 =β2
10 +

∑
β 6=0

∑
i

< β10, β10, Ti >β q
βT i

=β2
10 +

∑
d

< β10, β10, pt >dβ1+(β3−β1) q
d
1q3

+
∑
d

< β10, β10, pt >dβ1+2(β2−β1) q
d
1q

2
2

+
∑
d

< β10, β10, β1 >dβ1+(β2−β1) q
d
1q2(−1

2
β10)

+
∑
d

< β10, β10, β2 >dβ1+(β2−β1) q
d
1q2β12

+
∑
d

< β10, β10, β3 >dβ1+(β2−β1) q
d
1q2(β11 + β12)

+
∑
d6=0

< β10, β10, β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d6=0

< β10, β10, β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

+
∑
d6=0

< β10, β10, β6 >dβ1 q
d
1(

1
2
β7)

+
∑
d6=0

< β10, β10, β7 >dβ1 q
d
1(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d6=0

< β10, β10, β8 >dβ1 q
d
1(

1
2
β7 + β8)

+
∑
d6=0

< β10, β10, β9 >dβ1 q
d
1β9
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=β2
10 +

∑
d

< β10, β10, pt >dβ1+(β3−β1) q
d
1q3

+
∑
d

< β10, β10, β2 >dβ1+(β2−β1) q
d
1q2β12

+
∑
d

< β10, β10, β3 >dβ1+(β2−β1) q
d
1q2(β11 + β12)

+
∑
d6=0

< β10, β10, β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d6=0

< β10, β10, β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

=β2
10 +

∫
β3

β10

∫
β3

β10 < pt >β3 q1q3

+
∫
β2

β10

∫
β2

β10 < β2 >β2 q1q2β12

+
∫
β2

β10

∫
β2

β10 < β3 >β2 q1q2(β11 + β12)

+
∑
d6=0

∫
dβ1

β10

∫
dβ1

β10 < β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d6=0

∫
dβ1

β10

∫
dβ1

β10 < β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

=β2
10 +

∑
d6=0

(−2d)2−2
d
qd1(−1

2
β5) +

∑
d6=0

(−2d)2−4
d
qd1(−1

2
β4 −

1
2
β5)

=β2
10 + 8

∑
d6=0

dqd1β4 + 12
∑
d6=0

dqd1β5.

Here above, many terms vanish because either the invariants involved are trivial or the integrals∫
β2
β10 =

∫
β3
β10 = 0. We also used the fact that

∫
β1
β10 = −2.

Similarly, if we substitute β11 for the second β10 in the expression of β10 ∗ β10 and omit trivial

terms for the same reasons stated above, we have

β10 ∗ β11 =β10β11 +
∑
d

< β10, β11, pt >dβ1+(β3−β1) q
d
1q3

+
∑
d

< β10, β11, β2 >dβ1+(β2−β1) q
d
1q2β12

+
∑
d

< β10, β11, β3 >dβ1+(β2−β1) q
d
1q2(β11 + β12)

88



+
∑
d 6=0

< β10, β11, β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d 6=0

< β10, β11, β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

=β10β11 +
∫
β3

β10

∫
β3

β11 < pt >β3 q1q3

+
∫
β2

β10

∫
β2

β11 < β2 >β2 q1q2β12

+
∫
β2

β10

∫
β2

β11 < β3 >β2 q1q2(β11 + β12)

+
∑
d 6=0

∫
dβ1

β10

∫
dβ1

β11 < β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d 6=0

∫
dβ1

β10

∫
dβ1

β11 < β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

=β10β11,

where we used the fact that
∫
β1
β11 = 0.

Also by analogy,

β10 ∗ β12 =β10β12 +
∫
β3

β10

∫
β3

β12 < pt >β3 q1q3

+
∫
β2

β10

∫
β2

β12 < β2 >β2 q1q2β12

+
∫
β2

β10

∫
β2

β12 < β3 >β2 q1q2(β11 + β12)

+
∑
d6=0

∫
dβ1

β10

∫
dβ1

β12 < β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d6=0

∫
dβ1

β10

∫
dβ1

β12 < β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

=β10β12,
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where we used the fact that
∫
β1
β12 = 0;

β11 ∗ β11 =β2
11 +

∫
β3

β11

∫
β3

β11 < pt >β3 q1q3

+
∫
β2

β11

∫
β2

β11 < β2 >β2 q1q2β12

+
∫
β2

β11

∫
β2

β11 < β3 >β2 q1q2(β11 + β12)

+
∑
d6=0

∫
dβ1

β11

∫
dβ1

β11 < β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d6=0

∫
dβ1

β11

∫
dβ1

β11 < β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

=β2
11 + 2q1q3 − q1q2β12 + q1q2(β11 + β12)

=β2
11 + q1q2β11 + 2q1q3,

where we used the fact that
∫
β2
β11 = −1,

∫
β3
β11 = 1;

β11 ∗ β12 =β11β12 +
∫
β3

β11

∫
β3

β12 < pt >β3 q1q3

+
∫
β2

β11

∫
β2

β12 < β2 >β2 q1q2β12

+
∫
β2

β11

∫
β2

β12 < β3 >β2 q1q2(β11 + β12)

+
∑
d6=0

∫
dβ1

β11

∫
dβ1

β12 < β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d6=0

∫
dβ1

β11

∫
dβ1

β12 < β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

=β11β12 + q1q2β12 − q1q2(β11 + β12)

=β11β12 − q1q2β11,
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where we used the fact that
∫
β2
β12 = −1,

∫
β3
β12 = 0; and finally,

β12 ∗ β12 =β2
12 +

∫
β3

β12

∫
β3

β12 < pt >β3 q1q3

+
∫
β2

β12

∫
β2

β12 < β2 >β2 q1q2β12

+
∫
β2

β12

∫
β2

β12 < β3 >β2 q1q2(β11 + β12)

+
∑
d6=0

∫
dβ1

β12

∫
dβ1

β12 < β4 >dβ1 q
d
1(−1

2
β5)

+
∑
d6=0

∫
dβ1

β12

∫
dβ1

β12 < β5 >dβ1 q
d
1(−1

2
β4 −

1
2
β5)

=β2
12 − q1q2β12 + q1q2(β11 + β12)

=β2
12 + q1q2β11.

Now we summarize what we got above:

β10 ∗ β10 =β2
10 + 8

∑
d6=0

dqd1β4 + 12
∑
d6=0

dqd1β5,

β10 ∗ β11 =β10β11,

β10 ∗ β12 =β10β12,

β11 ∗ β11 =β2
11 + q1q2β11 + 2q1q3,

β11 ∗ β12 =β11β12 − q1q2β11,

β12 ∗ β12 =β2
12 + q1q2β11.

(5.1)

For later use, we express the basis elements in terms of quantum products of generators in view of

the list of intersection products at page 29:

β4 =
1
2
β10 ∗ β11, β5 =

1
2
β10 ∗ β12,

β6 = β11 ∗ β11 + β11 ∗ β12 − 2q1q3,

β7 = β12 ∗ β12 − q1q2β11,

β8 = β11 ∗ β12 + q1q2β11 − β9.

(5.2)
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Furthermore,

β9 ∗ β10 =β9β10 +
∑
d

< β9, β10, pt >dβ1+3(β2−β1) q
d
1q

3
2

+
∑
d

< β9, β10, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

+
∑
d

< β9, β10, β1 >dβ1+2(β2−β1) q
d
1q

2
2(−1

2
β10)

+
∑
d

< β9, β10, β2 >dβ1+2(β2−β1) q
d
1q

2
2β12

+
∑
d

< β9, β10, β3 >dβ1+2(β2−β1) q
d
1q

2
2(β11 + β12)

+
∑
d

< β9, β10, β1 >dβ1+(β3−β1) q
d
1q3(−1

2
β10)

+
∑
d

< β9, β10, β2 >dβ1+(β3−β1) q
d
1q3β12

+
∑
d

< β9, β10, β3 >dβ1+(β3−β1) q
d
1q3(β11 + β12)

+
∑
d

< β9, β10, β4 >dβ1+(β2−β1) q
d
1q2(−1

2
β5)

+
∑
d

< β9, β10, β5 >dβ1+(β2−β1) q
d
1q2(−1

2
β4 −

1
2
β5)

+
∑
d

< β9, β10, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

+
∑
d

< β9, β10, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d

< β9, β10, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)

+
∑
d

< β9, β10, β9 >dβ1+(β2−β1) q
d
1q2β9

+
∑
d6=0

< β9, β10, β10 >dβ1 q
d
1(−1

2
β1)

+
∑
d6=0

< β9, β10, β11 >dβ1 q
d
1β3

+
∑
d6=0

< β9, β10, β12 >dβ1 q
d
1(β2 + β3)
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=β9β10 +
∑
d

∫
dβ1+(β2−β1)+(β3−β1)

β10 < β9, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

+
∑
d

∫
dβ1+(β3−β1)

β10 < β9, β2 >dβ1+(β3−β1) q
d
1q3β12

=β9β10.

Here we used the fact that < β9, pt >dβ1+(β2−β1)+(β3−β1) and < β9, β2 >dβ1+(β3−β1) are nontrivial

only when d = 2 and d = 1 respectively, but
∫
β2+β3

β10 =
∫
β3
β10 = 0.

Similarly, we substitute β11 and β12 for β10 in the expression of β9 ∗ β10 respectively, and omit

trivial terms to get

β9 ∗ β11 =β9β11 +
∑
d

∫
dβ1+(β2−β1)+(β3−β1)

β11 < β9, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

+
∑
d

∫
dβ1+(β3−β1)

β11 < β9, β2 >dβ1+(β3−β1) q
d
1q3β12

=β9β11 + q1q3β12,

β9 ∗ β12 =β9β12 +
∑
d

∫
dβ1+(β2−β1)+(β3−β1)

β12 < β9, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

+
∑
d

∫
dβ1+(β3−β1)

β12 < β9, β2 >dβ1+(β3−β1) q
d
1q3β12

=β9β12 + 2q2
1q2q3.

We list these results as follows:

β9 ∗ β10 =β9β10,

β9 ∗ β11 =β9β11 + q1q3β12,

β9 ∗ β12 =β9β12 + 2q2
1q2q3.

(5.3)

The basis elements β1, β2, β3 are expressed as

β1 =
1
2
β9 ∗ β10,

β2 = β9 ∗ β11 − q1q3β12,

β3 = β9 ∗ β12 − 2q2
1q2q3.

(5.4)
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With all the computational results in §4.5, we can compute

β9 ∗ β9 =β2
9 +

∑
d

< β9, β9, pt >dβ1+4(β2−β1) q
d
1q

4
2

+
∑
d

< β9, β9, pt >dβ1+2(β2−β1)+(β3−β1) q
d
1q

2
2q3

+
∑
d

< β9, β9, pt >dβ1+2(β3−β1) q
d
1q

2
3

+
∑
d

< β9, β9, β1 >dβ1+3(β2−β1) q
d
1q

3
2(−1

2
β10)

+
∑
d

< β9, β9, β2 >dβ1+3(β2−β1) q
d
1q

3
2β12

+
∑
d

< β9, β9, β3 >dβ1+3(β2−β1) q
d
1q

3
2(β11 + β12)

+
∑
d

< β9, β9, β1 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3(−1

2
β10)

+
∑
d

< β9, β9, β2 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3β12

+
∑
d

< β9, β9, β3 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3(β11 + β12)

+
∑
d

< β9, β9, β4 >dβ1+2(β2−β1) q
d
1q

2
2(−1

2
β5)

+
∑
d

< β9, β9, β5 >dβ1+2(β2−β1) q
d
1q

2
2(−1

2
β4 −

1
2
β5)

+
∑
d

< β9, β9, β6 >dβ1+2(β2−β1) q
d
1q

2
2(

1
2
β7)

+
∑
d

< β9, β9, β7 >dβ1+2(β2−β1) q
d
1q

2
2(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d

< β9, β9, β8 >dβ1+2(β2−β1) q
d
1q

2
2(

1
2
β7 + β8)
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+
∑
d

< β9, β9, β9 >dβ1+2(β2−β1) q
d
1q

2
2β9

+
∑
d

< β9, β9, β4 >dβ1+(β3−β1) q
d
1q3(−1

2
β5)

+
∑
d

< β9, β9, β5 >dβ1+(β3−β1) q
d
1q3(−1

2
β4 −

1
2
β5)

+
∑
d

< β9, β9, β6 >dβ1+(β3−β1) q
d
1q3(

1
2
β7)

+
∑
d

< β9, β9, β7 >dβ1+(β3−β1) q
d
1q3(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d

< β9, β9, β8 >dβ1+(β3−β1) q
d
1q3(

1
2
β7 + β8)

+
∑
d

< β9, β9, β9 >dβ1+(β3−β1) q
d
1q3β9

+
∑
d

< β9, β9, β10 >dβ1+(β2−β1) q
d
1q2(−1

2
β1)

+
∑
d

< β9, β9, β11 >dβ1+(β2−β1) q
d
1q2β3

+
∑
d

< β9, β9, β12 >dβ1+(β2−β1) q
d
1q2(β2 + β3)

=β2
9 +

∑
d

< β9, β9, β3 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3(β11 + β12)

=β2
9 + q2

1q2q3(β11 + β12)

=β2
9 + q2

1q2q3β11 + q2
1q2q3β12.

We rewrite the result of this computation as

β9 ∗ β9 = β2
9 + q2

1q2q3β11 + q2
1q2q3β12. (5.5)

5.2 Associativity of Quantum Product

Gromov-Witten invariants enjoy strong relations arising from the associativity of the quantum

product. In this section, we make use of the associativity of the quantum product to derive

some relations of Gromov-Witten invariants and then simplify these relations to compute the

invariants. This finishes the project we initiated in the previous chapter to compute all the two-
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pointed invariants. In the next section, we’ll apply these invariants to the computations of quantum

products, thus determining the quantum product ring in the last section.

First, we study the associativity identity

β10 ∗ (β10 ∗ β12) = (β10 ∗ β10) ∗ β12.

From the equalities in (5.1, 5.2) in §5.1, the left-hand side is equal to

β10 ∗ (β10β12) = β10 ∗ (2β5) = 2β5 ∗ β10,

the right-hand side is equal to

(β2
10 + 8

∑
d6=0

dqd1β4 + 12
∑
d 6=0

dqd1β5) ∗ β12

=(4β4 + 6β5 − 2β7 − 4β8 − 4β9 + 8
∑
d 6=0

dqd1β4 + 12
∑
d6=0

dqd1β5) ∗ β12

=4β4 ∗ β12 + 6β5 ∗ β12 − 2β7 ∗ β12 − 4β8 ∗ β12 − 4β9 ∗ β12

+ 8
∑
d 6=0

dqd1β4 ∗ β12 + 12
∑
d 6=0

dqd1β5 ∗ β12,

recalling that

β2
10 = 4β4 + 6β5 − 2β7 − 4β8 − 4β9.

Then equating the two sides, we obtain the first identity

2β4 ∗ β12 + 3β5 ∗ β12 − β7 ∗ β12 − 2β8 ∗ β12 − 2β9 ∗ β12

+ 4
∑
d6=0

dqd1β4 ∗ β12 + 6
∑
d 6=0

dqd1β5 ∗ β12 = β5 ∗ β10

(5.6)

Then we look at the associativity identity

β10 ∗ (β12 ∗ β12) = (β10 ∗ β12) ∗ β12.
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The left-hand side is equal to

β10 ∗ (β2
12 + q1q2β11) = β10 ∗ β7 + q1q2β10 ∗ β11

=β7 ∗ β10 + q1q2β10β11 = β7 ∗ β10 + 2q1q2β4,

the right-hand side is equal to

(β10β12) ∗ β12 = 2β5 ∗ β12.

Then we get the second identity

β7 ∗ β10 + 2q1q2β4 = 2β5 ∗ β12 (5.7)

Finally, we look at the associativity identity

β10 ∗ (β11 ∗ β12) = (β10 ∗ β11) ∗ β12.

The left-hand side is equal to

β10 ∗ (β11β12 − q1q2β11) = β10 ∗ (β8 + β9)− q1q2β10 ∗ β11

=β10 ∗ (β8 + β9)− q1q2β10β11 = β8 ∗ β10 + β9 ∗ β10 − 2q1q2β4

the right-hand side is equal to

(β10β11) ∗ β12 = 2β4 ∗ β12,

so we get the third identity

β8 ∗ β10 + β9 ∗ β10 − 2q1q2β4 = 2β4 ∗ β12 (5.8)
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Also

(β10 ∗ β11) ∗ β12 = β11 ∗ (β10 ∗ β12),

and the right-hand side is equal to

β11 ∗ (β10β12) = β11 ∗ (2β5) = 2β5 ∗ β11,

and thus we get the fourth equation

β4 ∗ β12 = β5 ∗ β11 (5.9)

For each identity, as we compute the quantum products, we can compare and equate the terms

at the two sides corresponding to the same cohomology class and the same degrees of powers of

the parameters. We first consider the terms corresponding to the cohomology class 1 and qd1q2q3.

Beginning with the second identity (5.7), we get the equation

< β7, β10, pt >d q
d
1q2q3 = 2 < β5, β12, pt >d q

d
1q2q3,

where < β5, β12, pt >d, etc. means the invariants at the curve class β = dβ1 + (β2−β1) + (β3−β1).

But

< β7, β10, pt >d=
∫
β
β10 < β7, pt >d= −2(d− 2) < β7, pt >d,

< β5, β12, pt >d=
∫
β
β12 < β5, pt >d=< β5, pt >d,

so we know for any d,

(d− 2) < β7, pt >d= − < β5, pt >d .
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From this when d 6= 2,

< β7, pt >d= −
1

d− 2
< β5, pt >d .

From the first identity (5.6) above, we get

2
∑
d

< β4, β12, pt >d q
d
1q2q3 + 3

∑
d

< β5, β12, pt >d q
d
1q2q3

−
∑
d

< β7, β12, pt >d q
d
1q2q3 − 2

∑
d

< β8, β12, pt >d q
d
1q2q3

− 2
∑
d

< β9, β12, pt >d q
d
1q2q3 + 4

∑
l 6=0

lql1
∑
k

< β4, β12, pt >k q
k
1q2q3

+ 6
∑
l 6=0

lql1
∑
k

< β5, β12, pt >k q
k
1q2q3

=
∑
d

< β5, β10, pt >d q
d
1q2q3,

But

< β4, β12, pt >d=
∫
β
β12 < β4, pt >d= 1 · 0 = 0,

< β8, β12, pt >d=
∫
β
β12 < β8, pt >d= 1 · 0 = 0,

for any d and for any d 6= 2,

< β9, β12, pt >d=
∫
β
β12 < β9, pt >d=< β9, pt >d= 0,

but when d = 2, < β9, β12, pt >d= 2. With these in place, the above equation simplifies to

3
∑
d

< β5, pt >d q
d
1q2q3 −

∑
d

< β7, pt >d q
d
1q2q3

+ 6
∑
l 6=0

lql1
∑
k

< β5, pt >k q
k
1q2q3 − 4q2

1q2q3

=− 2
∑
d

(d− 2) < β5, pt >d q
d
1q2q3,
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or

∑
d

(2d− 1) < β5, pt >d q
d
1q2q3 −

∑
d

< β7, pt >d q
d
1q2q3

+ 6
∑
l 6=0

lql1
∑
k

< β5, pt >k q
k
1q2q3 − 4q2

1q2q3 = 0.

Let ad =< β5, pt >d, then

∑
l 6=0

lql1
∑
k

< β5, pt >k q
k
1q2q3 =

∑
d

(ad−1 + 2ad−2 + · · ·+ da0)qd1q2q3.

Substituting this in the above equation and equating the terms in front of the power qd1q2q3, with

d > 2, we obtain

(2d− 1 +
1

d− 2
)ad + 6(ad−1 + 2ad−2 + · · ·+ da0) = 0

or

ad = − 6(d− 2)
(2d− 3)(d− 1)

(ad−1 + 2ad−2 + · · ·+ da0)

The initial data can be determined directly using localization, by which we get

< β5, pt >0= 0, < β5, pt >1= 1, < β5, pt >2= 0.

Note that < β5, pt >2= 0 is compatible with the formula < β5, pt >d= −(d − 2) < β7, pt >d if we

plug in d = 2. Then putting these initial values back into the recursive relation above, we get

< β5, pt >d= −
6(d− 2)

(2d− 3)(d− 1)
(ad−1 + 2ad−2 + · · ·+ (d− 3)a3)− 6(d− 2)

2d− 3
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and hence < β7, pt >d can also be determined as

< β7, pt >d= −
1

d− 2
ad

=
6

(2d− 3)(d− 1)
(ad−1 + 2ad−2 + · · ·+ (d− 3)a3) +

6
2d− 3

for all d > 2. But the initial values of < β7, pt >d are evaluated as

< β7, pt >0= 0, < β7, pt >1= 1, < β7, pt >2= 2.

Next we consider the terms corresponding to the second degree cohomology classes and powers

qd1q2 from the associative identities. First we equate the two sides of the identity (5.6) with the

class β4:

2
∑
d

< β4, β12, β4 >d q
d
1q2 + 3

∑
d

< β5, β12, β4 >d q
d
1q2

−
∑
d

< β7, β12, β4 >d q
d
1q2 − 2

∑
d

< β8, β12, β4 >d q
d
1q2

− 2
∑
d

< β9, β12, β4 >d q
d
1q2 + 4

∑
l 6=0

lql1
∑
k

< β4, β12, β4 >k q
k
1q2

+ 6
∑
l 6=0

lql1
∑
k

< β5, β12, β4 >k q
k
1q2

=
∑
d

< β5, β10, β4 >d q
d
1q2.

With β = dβ1 + (β2 − β1),

∫
β
β12 = 1,

∫
β
β10 = −2(d− 1),

and

< β9, β12, β4 >d=< β9, β4 >d= 0,
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so we can simplify the expression above as

2
∑
d

< β4, β4 >d q
d
1q2 +

∑
d

(2d+ 1) < β5, β4 >d q
d
1q2

−
∑
d

< β7, β4 >d q
d
1q2 − 2

∑
d

< β8, β4 >d q
d
1q2

+ 4
∑
l 6=0

lql1
∑
k

< β4, β4 >k q
k
1q2 + 6

∑
l 6=0

lql1
∑
k

< β5, β4 >k q
k
1q2 = 0.

(5.10)

From the identity (5.9), we get

∑
d

< β4, β12, β4 >d q
d
1q2 =

∑
d

< β5, β11, β4 >d q
d
1q2

so for any d,

< β5, β4 >d= − < β4, β4 >d .

This relation coincides with the one we derived after Proposition 4.4.9.

From the equation (5.7), noting that

β4 = 2(−1
2
β5)− 2(−1

2
β4 −

1
2
β5)

we have

∑
d

< β7, β10, β4 >d q
d
1q2 + 4q1q2 = 2

∑
d

< β5, β12, β4 >d q
d
1q2

or

−
∑
d

(d− 1) < β7, β4 >d q
d
1q2 + 2q1q2 =

∑
d

< β5, β4 >d q
d
1q2,

from which we learn that when d > 1,

(d− 1) < β7, β4 >d= − < β5, β4 >d=< β4, β4 >d
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or

< β7, β4 >d=
1

d− 1
< β4, β4 >d .

From the equation (5.8), we get

∑
d

< β8, β10, β4 >d q
d
1q2 +

∑
d

< β9, β10, β4 >d q
d
1q2 − 4q1q2

= 2
∑
d

< β4, β12, β4 >d q
d
1q2

or

∑
d

(d− 1) < β8, β4 >d q
d
1q2 + 2q1q2 = −

∑
d

< β4, β4 >d q
d
1q2.

From this we know that when d > 1,

(d− 1) < β8, β4 >d= − < β4, β4 >d,

or

< β8, β4 >d= −
1

d− 1
< β4, β4 >d .

Substituting all these in the equation (5.10), we obtain an equation for < β4, β4 >d. Let

bd =< β4, β4 >d. When d > 1, it is simplified as

(1− 2d+
1

d− 1
)bd = 2(bd−1 + 2bd−2 + · · ·+ db0)

or

< β4, β4 >d= bd = − 2(d− 1)
d(2d− 3)

(bd−1 + 2bd−2 + · · ·+ db0).
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The initial values are computed by localization as

< β4, β4 >0= 1, < β4, β4 >1= −2.

So we obtain the expressions of the invariants

< β4, β5 >d= −bd

for any d and

< β4, β7 >d=
1

d− 1
bd, < β4, β8 >d= −

1
d− 1

bd,

for d > 1. Their initial values by localization are

< β4, β7 >0= −1, < β4, β8 >0= 1,

< β4, β7 >1= 0, < β4, β8 >1= 0.

In the same vain from the associativity identity (5.9), we get for any d,

< β4, β12, β5 >d=< β5, β11, β5 >d,

< β4, β12, β7 >d=< β5, β11, β7 >d,

< β4, β12, β8 >d=< β5, β11, β8 >d,

or

< β4, β5 >d= − < β5, β5 >d, < β4, β7 >d= − < β5, β7 >d,

< β4, β8 >d= − < β5, β8 >d,
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and hence for any d,

< β5, β5 >d= bd

and when d > 1,

< β5, β7 >d= −
1

d− 1
bd, < β5, β8 >d=

1
d− 1

bd.

Their initial values are

< β5, β7 >0= 1, < β5, β8 >0= −1,

< β5, β7 >1= 0, < β5, β8 >1= 0.

Now making use of the associativity identity (5.7), we get, for any d,

< β7, β10, β7 >d= 2 < β5, β12, β7 >d,

< β7, β10, β8 >d= 2 < β5, β12, β8 >d,

or

− (d− 1) < β7, β7 >d=< β5, β7 >d,

− (d− 1) < β7, β8 >d=< β5, β8 >d,

so when d > 1,

< β7, β7 >d=
1

(d− 1)2
bd, < β7, β8 >d= −

1
(d− 1)2

bd.

Their initial values are

< β7, β7 >0= 1, < β7, β8 >0= −1,

< β7, β7 >1= 2, < β7, β8 >1= 0.
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From the associativity identity (5.8), we get

< β8, β10, β8 >d + < β9, β10, β8 >d= 2 < β4, β12, β8 >d,

or for any d,

−(d− 1) < β8, β8 >d=< β4, β8 >d,

so for d > 1,

< β8, β8 >d=
1

(d− 1)2
bd.

Its initial values are

< β8, β8 >0= 1, < β8, β8 >1= −1,

Till this point, the two-pointed Gromov-Witten invariants with two insertions degree 2 partially

computed in Proposition 4.4.9 are completely determined.

In order to finish the computation in part (ii) in Proposition 4.4.5, we continue to work on the

associativity law of quantum product, making use of the equalities in (5.3, 5.4). First, we look at

β9 ∗ (β10 ∗ β11) = (β9 ∗ β10) ∗ β11 = (β9 ∗ β11) ∗ β10.

By the computational results before, these sides are, respectively,

β9 ∗ (β10 ∗ β11) = β9 ∗ (β10β11) = β9 ∗ (2β4) = 2β4 ∗ β9,

(β9 ∗ β10) ∗ β11 = (β9β10) ∗ β11 = 2β1 ∗ β11,

(β9 ∗ β11) ∗ β10 = (β9β11 + q1q3β12) ∗ β10 = β2 ∗ β10 + q1q3β10β12

= β2 ∗ β10 + 2q1q3β5,
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so we have the identity

2β4 ∗ β9 = 2β1 ∗ β11 = β2 ∗ β10 + 2q1q3β5. (5.11)

Now we look at

β9 ∗ (β10 ∗ β12) = β10 ∗ (β9 ∗ β12) = (β10 ∗ β9) ∗ β12.

The three sides are equal to

β9 ∗ (β10 ∗ β12) = β9 ∗ (β10β12) = 2β5 ∗ β9,

β10 ∗ (β9 ∗ β12) = β10 ∗ (β9β12 + 2q2
1q2q3) = β3 ∗ β10 + 2q2

1q2q3β10,

(β10 ∗ β9) ∗ β12 = (β9β10) ∗ β12 = 2β1 ∗ β12,

respectively, so we have the identity

2β5 ∗ β9 = 2β1 ∗ β12 = β3 ∗ β10 + 2q2
1q2q3β10. (5.12)

Then we look at

β9 ∗ (β11 ∗ β12) = β11 ∗ (β9 ∗ β12) = (β11 ∗ β9) ∗ β12.

The three sides are respectively equal to

β9 ∗ (β11 ∗ β12) = β9 ∗ (β11β12 − q1q2β11) = β9 ∗ (β8 + β9)− q1q2β9 ∗ β11

= β9 ∗ (β8 + β9)− q1q2(β9β11 + q1q3β12)

= β9 ∗ (β8 + β9)− q1q2β2 − q2
1q2q3β12,

β11 ∗ (β9 ∗ β12) = β11 ∗ (β9β12 + 2q2
1q2q3) = β3 ∗ β11 + 2q2

1q2q3β11,

(β11 ∗ β9) ∗ β12 = (β2 + q1q3β12) ∗ β12 = β2 ∗ β12 + q1q3(β2
12 + q1q2β11)

= β2 ∗ β12 + q1q3β7 + q2
1q2q3β11,
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so we have the identities

β9 ∗ (β8 + β9)−q1q2β2 − q2
1q2q3β12 = β3 ∗ β11 + 2q2

1q2q3β11

=β2 ∗ β12 + q1q3β7 + q2
1q2q3β11.

(5.13)

Now we consider

β9 ∗ (β12 ∗ β12) = (β9 ∗ β12) ∗ β12.

The two sides are equal to

β9 ∗ (β12 ∗ β12) = β9 ∗ (β2
12 + q1q2β11) = β7 ∗ β9 + q1q2β9 ∗ β11

= β7 ∗ β9 + q1q2(β9β11 + q1q3β12)

= β7 ∗ β9 + q1q2β2 + q2
1q2q3β12,

(β9 ∗ β12) ∗ β12 = (β9β12 + 2q2
1q2q3) ∗ β12 = β3 ∗ β12 + 2q2

1q2q3β12,

so we have the identity

β7 ∗ β9 + q1q2β2 = β3 ∗ β12 + q2
1q2q3β12. (5.14)

Next we consider

β9 ∗ (β11 ∗ β11) = (β9 ∗ β11) ∗ β11.

The two sides are equal to

β9 ∗ (β11 ∗ β11) = β9 ∗ (β2
11 + q1q2β11 + 2q1q3)

= β9 ∗ (β6 − β8 − β9) + q1q2β9 ∗ β11 + 2q1q3β9

= β6 ∗ β9 − β9 ∗ (β8 + β9) + q1q2(β2 + q1q3β12) + 2q1q3β9

= β6 ∗ β9 − β9 ∗ (β8 + β9) + q1q2β2 + q2
1q2q3β12 + 2q1q3β9,
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(β9 ∗ β11) ∗ β11 = (β2 + q1q3β12) ∗ β11

= β2 ∗ β11 + q1q3β12 ∗ β11

= β2 ∗ β11 + q1q3(β11β12 − q1q2β11)

= β2 ∗ β11 + q1q3(β8 + β9)− q2
1q2q3β11.

So we have the identity

β6 ∗ β9 − β9 ∗ (β8 + β9) + q1q2β2 + q2
1q2q3β12

= β2 ∗ β11 + q1q3β8 − q1q3β9 − q2
1q2q3β11.

(5.15)

Finally we look at

β9 ∗ (β10 ∗ β10) = (β9 ∗ β10) ∗ β10.

The right-hand side is equal to

(β9β10) ∗ β10 = 2β1 ∗ β10,

the left-hand side is equal to

(β2
10 + 8

∑
d 6=0

dqd1β4 + 12
∑
d 6=0

dqd1β5) ∗ β9

=(4β4 + 6β5 − 2β7 − 4β8 − 4β9 + 8
∑
d6=0

dqd1β4 + 12
∑
d6=0

dqd1β5) ∗ β9

=4β4 ∗ β9 + 6β5 ∗ β9 − 2β7 ∗ β9 − 4β9 ∗ (β8 + β9)

+ 8
∑
d6=0

dqd1β4 ∗ β9 + 12
∑
d 6=0

dqd1β5 ∗ β9,
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thus we obtain the identity

β1 ∗ β10 =2β4 ∗ β9 + 3β5 ∗ β9 − β7 ∗ β9 − 2β9 ∗ (β8 + β9)

+ 4
∑
d 6=0

dqd1β4 ∗ β9 + 6
∑
d 6=0

dqd1β5 ∗ β9.
(5.16)

From these identities, we collect the following:

β4 ∗ β9 = β1 ∗ β11, β5 ∗ β9 = β1 ∗ β12,

β7 ∗ β9 = β3 ∗ β12 − q1q2β2 + q2
1q2q3β12,

β9 ∗ (β8 + β9) = β3 ∗ β11 + q1q2β2 + 2q2
1q2q3β11 + q2

1q2q3β12.

Substituting all these in the right-hand side of identity (5.16) and simplifying, we have

2β1 ∗ β11 + 3β1 ∗ β12 − β3 ∗ β12 − 2β3 ∗ β11 − q1q2β2 − 4q2
1q2q3β11

− 3q2
1q2q3β12 + 4

∑
d6=0

dqd1β1 ∗ β11 + 6
∑
d6=0

dqd1β1 ∗ β12 = β1 ∗ β10.
(5.17)

Now in this equation, we equate the corresponding terms at the two sides in front of the same

cohomology class −1
2β10 and the same power qd1q2q3 to get

2
∑
d

< β1, β11, β1 >d q
d
1q2q3 + 3

∑
d

< β1, β12, β1 >d q
d
1q2q3

−
∑
d

< β3, β12, β1 >d q
d
1q2q3 − 2

∑
d

< β3, β11, β1 >d q
d
1q2q3

+ 4
∑
l 6=0

lql1
∑
k

< β1, β11, β1 >k q
k
1q2q3 + 6

∑
l 6=0

lql1
∑
k

< β1, β12, β1 >k q
k
1q2q3

=
∑
d

< β1, β10, β1 >d q
d
1q2q3,

in which β = dβ1 +(β2−β1)+(β3−β1). Let < β1, β1 >d be denoted as cd. Then from this equation

by integrating out β11, β12, we get

(2d− 1) < β1, β1 >d − < β3, β1 >d

+ 6(cd−1 + 2cd−2 + · · ·+ (d− 1)c1 + dc0) = 0.
(5.18)
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Carrying out the same process for the identity 2β1 ∗β12 = β3 ∗β10 +2q2
1q2q3β10 in (5.12), we obtain

2
∑
d

< β1, β12, β1 >d q
d
1q2q3 =

∑
d

< β3, β10, β1 >d q
d
1q2q3 − 4q2

1q2q3

From this, we know that for any d,

(d− 2) < β3, β1 >d= − < β1, β1 >d

so when d 6= 2,

< β3, β1 >d= −
1

d− 2
< β1, β1 >d .

Putting this back into the equation (5.18), we get

(2d− 1) < β1, β1 >d +
1

d− 2
< β1, β1 >d

+ 6(cd−1 + 2cd−2 + · · ·+ (d− 1)c1 + dc0) = 0

so

< β1, β1 >d= −
6(d− 2)

(d− 1)(2d− 3)
(cd−1 + 2cd−2 + · · ·+ (d− 1)c1 + dc0).

Its initial values are by localization

< β1, β1 >0= 0, < β1, β1 >1= 1, < β1, β1 >2= −2.

Obviously, when d 6= 2,

< β3, β1 >d= −
1

d− 2
cd.
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Its initial values are by localization

< β3, β1 >0= 0, < β3, β1 >1= 1, < β3, β1 >2= 0.

Again from the identity 2β1 ∗ β12 = β3 ∗ β10 + 2q2
1q2q3β10, we get

2 < β1, β12, β3 >d=< β3, β10, β3 >d

so for any d,

< β1, β3 >d= −(d− 2) < β3, β3 >d .

Thus when d > 2, we obtain

< β3, β3 >d=
1

(d− 2)2
cd

=− 6
(d− 1)(d− 2)(2d− 3)

(cd−1 + 2cd−2 + · · ·+ (d− 1)c1 + dc0).

Its initial values are

< β3, β3 >0= 0, < β3, β3 >1= 1, < β3, β3 >2= 2.

These are the complements to the results of Proposition 4.4.5.

Finally, we equate the terms at two sides in front of classes −1
2β5 and 1

2β7 respectively and

power qd1q3 in (5.17) to get

2
∑
d

< β1, β11, β4 >d q
d
1q3 + 3

∑
d

< β1, β12, β4 >d q
d
1q3

−
∑
d

< β3, β12, β4 >d q
d
1q3 − 2

∑
d

< β3, β11, β4 >d q
d
1q3

+ 4
∑
l 6=0

lql1
∑
k

< β1, β11, β4 >k q
k
1q3 + 6

∑
l 6=0

lql1
∑
k

< β1, β12, β4 >k q
k
1q3

=
∑
d

< β1, β10, β4 >d q
d
1q3,
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and

2
∑
d

< β1, β11, β6 >d q
d
1q3 + 3

∑
d

< β1, β12, β6 >d q
d
1q3

−
∑
d

< β3, β12, β6 >d q
d
1q3 − 2

∑
d

< β3, β11, β6 >d q
d
1q3

+ 4
∑
l 6=0

lql1
∑
k

< β1, β11, β6 >k q
k
1q3 + 6

∑
l 6=0

lql1
∑
k

< β1, β12, β6 >k q
k
1q3

=
∑
d

< β1, β10, β6 >d q
d
1q3,

in which the curve class β = dβ1 + (β3 − β1).

Simplified, these give

∑
d

< β1, β4 >d q
d
1q3 + 2

∑
l 6=0

lql1
∑
k

< β1, β4 >k q
k
1q3

= −
∑
d

(d− 1) < β1, β4 >d q
d
1q3,

∑
d

< β1, β6 >d q
d
1q3 + 2

∑
l 6=0

lql1
∑
k

< β1, β6 >k q
k
1q3 − 2q1q3

= −
∑
d

(d− 1) < β1, β6 >d q
d
1q3,

noting that

∫
dβ1+(β3−β1)

β10 = −2(d− 1),
∫
dβ1+(β3−β1)

β11 = 1,
∫
dβ1+(β3−β1)

β12 = 0

and < β3, β4 >d= 0 for all d, < β3, β6 >d= 0 for d 6= 1, 2 for d = 1.

Let fd =< β1, β4 >d, gd =< β1, β6 >d. Then solving these equations, we get for any d,

< β1, β4 >d= −
2
d

(fd−1 + 2fd−2 + · · ·+ (d− 1)f1 + df0)

and for d > 1,

< β1, β6 >d= −
2
d

(gd−1 + 2gd−2 + · · ·+ (d− 1)g1 + dg0).
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Their initial values by localization are

< β1, β4 >0= 1, < β1, β4 >1= −2,

< β1, β6 >0= 1, < β1, β6 >1= 0.

From the identity 2β1 ∗ β11 = β2 ∗ β10 + 2q1q3β5 in (5.11), we again equate the terms at two

sides in front of class −1
2β5 and 1

2β7 respectively to get

2
∑
d

< β1, β11, β4 >d q
d
1q3 =

∑
d

< β2, β10, β4 >d q
d
1q3 − 4q1q3,

2
∑
d

< β1, β11, β6 >d q
d
1q3 =

∑
d

< β2, β10, β6 >d q
d
1q3,

or

∑
d

< β1, β4 >d q
d
1q3 = −

∑
d

(d− 1) < β2, β4 >d q
d
1q3 − 2q1q3,

∑
d

< β1, β6 >d q
d
1q3 = −

∑
d

(d− 1) < β2, β6 >d q
d
1q3.

So for any d > 1,

< β1, β4 >d= −(d− 1) < β2, β4 >d,

< β1, β6 >d= −(d− 1) < β2, β6 >d,

and hence

< β2, β4 >d = − 1
d− 1

fd =
2

d(d− 1)
(fd−1 + 2fd−2 + · · ·+ (d− 1)f1 + df0),

< β2, β6 >d = − 1
d− 1

gd =
2

d(d− 1)
(gd−1 + 2gd−2 + · · ·+ (d− 1)g1 + dg0).
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Their initial values are

< β2, β4 >0= 1, < β2, β4 >1= 0,

< β2, β6 >0= 1, < β2, β6 >1= 1.

Thus the computation in Proposition 4.4.7 is completed.

5.3 Quantum Products Continued

We aim at deciding the quantum product ring structure of the Hilbert scheme F [2]. For this

purpose, results of quantum products of basis elements are needed. We have worked out some

products in the first section of this chapter, but in order to carry this project through, quantum

products of more elements should be put into play. In this section, we solve this problem, making

use of the results in the previous section.

We start with β7 ∗ β10. By definition,

β7 ∗ β10 =β7β10 +
∑
d

< β7, β10, pt >dβ1+3(β2−β1) q
d
1q

3
2

+
∑
d

< β7, β10, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

+
∑
d

< β7, β10, β1 >dβ1+2(β2−β1) q
d
1q

2
2(−1

2
β10)

+
∑
d

< β7, β10, β2 >dβ1+2(β2−β1) q
d
1q

2
2β12

+
∑
d

< β7, β10, β3 >dβ1+2(β2−β1) q
d
1q

2
2(β11 + β12)

+
∑
d

< β7, β10, β1 >dβ1+(β3−β1) q
d
1q3(−1

2
β10)

+
∑
d

< β7, β10, β2 >dβ1+(β3−β1) q
d
1q3β12

+
∑
d

< β7, β10, β3 >dβ1+(β3−β1) q
d
1q3(β11 + β12)

+
∑
d

< β7, β10, β4 >dβ1+(β2−β1) q
d
1q2(−1

2
β5)
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+
∑
d

< β7, β10, β5 >dβ1+(β2−β1) q
d
1q2(−1

2
β4 −

1
2
β5)

+
∑
d

< β7, β10, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

+
∑
d

< β7, β10, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d

< β7, β10, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)

+
∑
d

< β7, β10, β9 >dβ1+(β2−β1) q
d
1q2β9 +

∑
d6=0

< β7, β10, β10 >dβ1 q
d
1(−1

2
β1)

+
∑
d6=0

< β7, β10, β11 >dβ1 q
d
1β3 +

∑
d6=0

< β7, β10, β12 >dβ1 q
d
1(β2 + β3)

=β7β10 +
∑
d

∫
dβ1+(β2−β1)+(β3−β1)

β10 < β7, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

+
∑
d

∫
dβ1+(β2−β1)

β10 < β7, β4 >dβ1+(β2−β1) q
d
1q2(−1

2
β5)

+
∑
d

∫
dβ1+(β2−β1)

β10 < β7, β5 >dβ1+(β2−β1) q
d
1q2(−1

2
β4 −

1
2
β5)

+
∑
d

∫
dβ1+(β2−β1)

β10 < β7, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

+
∑
d

∫
dβ1+(β2−β1)

β10 < β7, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d

∫
dβ1+(β2−β1)

β10 < β7, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)

=β7β10 − 2
∑
d

(d− 2) < β7, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

− 2
∑
d

(d− 1) < β7, β4 >dβ1+(β2−β1) q
d
1q2(−1

2
β5)

− 2
∑
d

(d− 1) < β7, β5 >dβ1+(β2−β1) q
d
1q2(−1

2
β4 −

1
2
β5)

− 2
∑
d

(d− 1) < β7, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

− 2
∑
d

(d− 1) < β7, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

− 2
∑
d

(d− 1) < β7, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)
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=β7β10 + 2
∑
d

adq
d
1q2q3 − 2

∑
d6=1

bdq
d
1q2(−1

2
β5)

+ 2
∑
d 6=1

bdq
d
1q2(−1

2
β4 −

1
2
β5)− 2

∑
d6=1

bd
d− 1

qd1q2(
1
2
β6 +

1
2
β7 +

1
2
β8)

+ 2
∑
d 6=1

bd
d− 1

qd1q2(
1
2
β7 + β8)

=β7β10 + 2
∑
d

adq
d
1q2q3 −

∑
d 6=1

bdq
d
1q2β4 −

∑
d 6=1

bd
d− 1

qd1q2β6 +
∑
d 6=1

bd
d− 1

qd1q2β8

=β7β10 + 2
∑
d

adq
d
1q2q3 −

1
2

∑
d6=1

bdq
d
1q2β10 ∗ β11

−
∑
d6=1

bd
d− 1

qd1q2(β11 ∗ β11 + β11 ∗ β12 − 2q1q3)

+
∑
d 6=1

bd
d− 1

qd1q2(β11 ∗ β12 + q1q2β11 − β9)

=β7β10 −
1
2

∑
d6=1

bdq
d
1q2β10 ∗ β11 −

∑
d 6=1

bd
d− 1

qd1q2β11 ∗ β11 +
∑
d6=1

bd
d− 1

qd+1
1 q2

2β11

−
∑
d6=1

bd
d− 1

qd1q2β9 + 2
∑
d

adq
d
1q2q3 + 2

∑
d6=1

bd
d− 1

qd+1
1 q2q3.

Here as always, we dropped the trivial terms resulted from either the triviality of the invariants

or the integrals being zero and in the penultimate equality, we replaced the basis elements by

expressions involving quantum products.

We introduce power series

φ0(q) =
∑
d

adq
d, φ1(q) =

∑
d6=2

ad
d− 2

qd,

ψ0(q) =
∑
d6=1

bdq
d, ψ1(q) =

∑
d 6=1

bd
d− 1

qd, ψ2(q) =
∑
d 6=1

bd
(d− 1)2

qd.

Then we have the expression

β7 ∗ β10 =β7β10 −
1
2
ψ0(q1)q2β10 ∗ β11 − ψ1(q1)q2β11 ∗ β11 + ψ1(q1)q1q

2
2β11

− ψ1(q1)q2β9 + 2φ0(q1)q2q3 + 2ψ1(q1)q1q2q3.
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Similarly, ignoring vanishing terms, we have

β7 ∗ β11 =β7β11 −
∑
d

< β7, β4 >dβ1+(β2−β1) q
d
1q2(−1

2
β5)

−
∑
d

< β7, β5 >dβ1+(β2−β1) q
d
1q2(−1

2
β4 −

1
2
β5)

−
∑
d

< β7, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

−
∑
d

< β7, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

−
∑
d

< β7, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)

=β7β11 −
∑
d 6=1

bd
d− 1

qd1q2(−1
2
β5) +

∑
d6=1

bd
d− 1

qd1q2(−1
2
β4 −

1
2
β5)

+ 2q1q2 ·
1
2
β7 − (2q1q2 +

∑
d6=1

bd
(d− 1)2

qd1q2)(
1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d6=1

bd
(d− 1)2

qd1q2(
1
2
β7 + β8)

=β7β11 −
1
2
ψ1(q1)q2β4 − (q1q2 +

1
2
ψ2(q1)q2)β6 + (−q1q2 +

1
2
ψ2(q1)q2)β8

=β7β11 −
1
4
ψ1(q1)q2β10 ∗ β11 − (q1q2 +

1
2
ψ2(q1)q2)β11 ∗ β11

− 2q1q2β11 ∗ β12 + (−q2
1q

2
2 +

1
2
ψ2(q1)q1q

2
2)β11

+ (q1q2 −
1
2
ψ2(q1)q2)β9 + 2q2

1q2q3 + ψ2(q1)q1q2q3;

β7 ∗ β12 =β7β12 +
∑
d

< β7, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

+
∑
d

< β7, β4 >dβ1+(β2−β1) q
d
1q2(−1

2
β5)

+
∑
d

< β7, β5 >dβ1+(β2−β1) q
d
1q2(−1

2
β4 −

1
2
β5)

+
∑
d

< β7, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

+
∑
d

< β7, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d

< β7, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)
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=β7β12 + 2q2
1q2q3 −

∑
d6=2

ad
d− 2

qd1q2q3 +
∑
d 6=1

bd
d− 1

qd1q2(−1
2
β5)

−
∑
d 6=1

bd
d− 1

qd1q2(−1
2
β4 −

1
2
β5)− 2q1q2 ·

1
2
β7

+ (2q1q2 +
∑
d6=1

bd
(d− 1)2

qd1q2)(
1
2
β6 +

1
2
β7 +

1
2
β8)

−
∑
d 6=1

bd
(d− 1)2

qd1q2(
1
2
β7 + β8)

=β7β12 + 2q2
1q2q3 − φ1(q1)q2q3 +

1
2
ψ1(q1)q2β4 + (q1q2 +

1
2
ψ2(q1)q2)β6

+ (q1q2 −
1
2
ψ2(q1)q2)β8

=β7β12 +
1
4
ψ1(q1)q2β10 ∗ β11 + (q1q2 +

1
2
ψ2(q1)q2)β11 ∗ β11

+ 2q1q2β11 ∗ β12 + (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11 + (−q1q2 +

1
2
ψ2(q1)q2)β9

− ψ2(q1)q1q2q3 − φ1(q1)q2q3;

β6 ∗ β10 =β6β10 − 2
∑
d

(d− 2) < β6, pt >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3

− 2
∑
d

(d− 1) < β6, β1 >dβ1+(β3−β1) q
d
1q3(−1

2
β10)

− 2
∑
d

(d− 1) < β6, β2 >dβ1+(β3−β1) q
d
1q3β12

− 2
∑
d

(d− 1) < β6, β3 >dβ1+(β3−β1) q
d
1q3(β11 + β12)

− 2
∑
d

(d− 1) < β6, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

− 2
∑
d

(d− 1) < β6, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

− 2
∑
d

(d− 1) < β6, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)

=β6β10 +
∑
d

(d− 1)gdqd1q3β10 − 2
∑
d

gdq
d
1q3β12.
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If we introduce

ζ−1(q) =
∑
d

(d− 1)gdqd, ζ0(q) =
∑
d

gdq
d, ζ1(q) =

∑
d6=1

gd
d− 1

qd,

then we have

β6 ∗ β10 =β6β10 + ζ−1(q1)q3β10 − 2ζ0(q1)q3β12.

Continuing the computations, we get

β6 ∗ β11 =β6β11 +
∑
d

< β6, β1 >dβ1+(β3−β1) q
d
1q3(−1

2
β10)

+
∑
d

< β6, β2 >dβ1+(β3−β1) q
d
1q3β12

+
∑
d

< β6, β3 >dβ1+(β3−β1) q
d
1q3(β11 + β12)

−
∑
d

< β6, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

−
∑
d

< β6, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

−
∑
d

< β6, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)

=β6β11 −
1
2

∑
d

gdq
d
1q3β10 + (q1q3 +

∑
d6=1

gd
d− 1

qd1q3)β12 + 2q1q3(β11 + β12)

− 1
2
q1q2β7 + q1q2(β6 + β7 + β8)− q1q2(

1
2
β7 + β8)

=β6β11 −
1
2
ζ0(q1)q3β10 + (3q1q3 + ζ1(q1)q3)β12 + 2q1q3β11 + q1q2β6

=β6β11 + q1q2β11 ∗ β11 + q1q2β11 ∗ β12 −
1
2
ζ0(q1)q3β10

+ (3q1q3 + ζ1(q1)q3)β12 + 2q1q3β11 − 2q2
1q2q3;
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β8 ∗ β10 =β8β10 − 2
∑
d

(d− 1) < β8, β2 >dβ1+(β3−β1) q
d
1q3β12

− 2
∑
d

(d− 1) < β8, β4 >dβ1+(β2−β1) q
d
1q2(−1

2
β5)

− 2
∑
d

(d− 1) < β8, β5 >dβ1+(β2−β1) q
d
1q2(−1

2
β4 −

1
2
β5)

− 2
∑
d

(d− 1) < β8, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

− 2
∑
d

(d− 1) < β8, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

− 2
∑
d

(d− 1) < β8, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)

=β8β10 + 2
∑
d6=1

bdq
d
1q2(−1

2
β5)− 2

∑
d6=1

bdq
d
1q2(−1

2
β4 −

1
2
β5)

+ 2
∑
d6=1

bd
d− 1

qd1q2(
1
2
β6 +

1
2
β7 +

1
2
β8)− 2

∑
d6=1

bd
d− 1

qd1q2(
1
2
β7 + β8)

=β8β10 + ψ0(q1)q2β4 + ψ1(q1)q2β6 − ψ1(q1)q2β8

=β8β10 +
1
2
ψ0(q1)q2β10 ∗ β11 + ψ1(q1)q2β11 ∗ β11

− ψ1(q1)q1q
2
2β11 + ψ1(q1)q2β9 − 2ψ1(q1)q1q2q3;

β8 ∗ β11 =β8β11 +
∑
d

< β8, β2 >dβ1+(β3−β1) q
d
1q3β12

−
∑
d

< β8, β4 >dβ1+(β2−β1) q
d
1q2(−1

2
β5)

−
∑
d

< β8, β5 >dβ1+(β2−β1) q
d
1q2(−1

2
β4 −

1
2
β5)

−
∑
d

< β8, β6 >dβ1+(β2−β1) q
d
1q2 ·

1
2
β7

−
∑
d

< β8, β7 >dβ1+(β2−β1) q
d
1q2(

1
2
β6 +

1
2
β7 +

1
2
β8)

−
∑
d

< β8, β8 >dβ1+(β2−β1) q
d
1q2(

1
2
β7 + β8)
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=β8β11 + q1q3β12 +
∑
d6=1

bd
d− 1

qd1q2(−1
2
β5)−

∑
d6=1

bd
d− 1

qd1q2(−1
2
β4 −

1
2
β5)

− q1q2 ·
1
2
β7 +

∑
d 6=1

bd
(d− 1)2

qd1q2(
1
2
β6 +

1
2
β7 +

1
2
β8)

+ (q1q2 −
∑
d6=1

bd
(d− 1)2

qd1q2)(
1
2
β7 + β8)

=β8β11 + q1q3β12 +
1
2
ψ1(q1)q2β4 +

1
2
ψ2(q1)q2β6 + (q1q2 −

1
2
ψ2(q1)q2)β8

=β8β11 +
1
4
ψ1(q1)q2β10 ∗ β11 +

1
2
ψ2(q1)q2β11 ∗ β11 + q1q2β11 ∗ β12

+ (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11 + q1q3β12 + (

1
2
ψ2(q1)q2 − q1q2)β9 − ψ2(q1)q1q2q3.

By definition,

β3 ∗ β11 =β3β11 +
∑
d

< β3, β11, pt >dβ1+4(β2−β1) q
d
1q

4
2

+
∑
d

< β3, β11, pt >dβ1+2(β2−β1)+(β3−β1) q
d
1q

2
2q3

+
∑
d

< β3, β11, pt >dβ1+2(β3−β1) q
d
1q

2
3

+
∑
d

< β3, β11, β1 >dβ1+3(β2−β1) q
d
1q

3
2(−1

2
β10)

+
∑
d

< β3, β11, β2 >dβ1+3(β2−β1) q
d
1q

3
2β12

+
∑
d

< β3, β11, β3 >dβ1+3(β2−β1) q
d
1q

3
2(β11 + β12)

+
∑
d

< β3, β11, β1 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3(−1

2
β10)

+
∑
d

< β3, β11, β2 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3β12

+
∑
d

< β3, β11, β3 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3(β11 + β12)
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+
∑
d

< β3, β11, β4 >dβ1+2(β2−β1) q
d
1q

2
2(−1

2
β5)

+
∑
d

< β3, β11, β5 >dβ1+2(β2−β1) q
d
1q

2
2(−1

2
β4 −

1
2
β5)

+
∑
d

< β3, β11, β6 >dβ1+2(β2−β1) q
d
1q

2
2(

1
2
β7)

+
∑
d

< β3, β11, β7 >dβ1+2(β2−β1) q
d
1q

2
2(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d

< β3, β11, β8 >dβ1+2(β2−β1) q
d
1q

2
2(

1
2
β7 + β8)

+
∑
d

< β3, β11, β9 >dβ1+2(β2−β1) q
d
1q

2
2β9

+
∑
d

< β3, β11, β4 >dβ1+(β3−β1) q
d
1q3(−1

2
β5)

+
∑
d1

< β3, β11, β5 >dβ1+(β3−β1) q
d
1q3(−1

2
β4 −

1
2
β5)

+
∑
d

< β3, β11, β6 >dβ1+(β3−β1) q
d
1q3(

1
2
β7)

+
∑
d

< β3, β11, β7 >dβ1+(β3−β1) q
d
1q3(

1
2
β6 +

1
2
β7 +

1
2
β8)

+
∑
d

< β3, β11, β8 >dβ1+(β3−β1) q
d
1q3(

1
2
β7 + β8)

+
∑
d

< β3, β11, β9 >dβ1+(β3−β1) q
d
1q3β9

+
∑
d

< β3, β11, β10 >dβ1+(β2−β1) q
d
1q2(−1

2
β1)

+
∑
d

< β3, β11, β11 >dβ1+(β2−β1) q
d
1q2β3

+
∑
d

< β3, β11, β12 >dβ1+(β2−β1) q
d
1q2(β2 + β3)

=β3β11 + q1q3β7 + q1q2β3 − q1q2(β2 + β3) = β3β11 + q1q3β7 − q1q2β2

=β3β11 + q1q3β12 ∗ β12 − q1q2β9 ∗ β11 − q2
1q2q3β11 + q2

1q2q3β12.
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Similarly, with β11 replaced by β12,

β3 ∗ β12 =β3β12+ < β3, β1 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3(−1

2
β10)

+ < β3, β2 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3β12

+ < β3, β3 >dβ1+(β2−β1)+(β3−β1) q
d
1q2q3(β11 + β12)

+ < β3, β10 >dβ1+(β2−β1) q
d
1q2(−1

2
β1)

+ < β3, β11 >dβ1+(β2−β1) q
d
1q2β3

+ < β3, β12 >dβ1+(β2−β1) q
d
1q2(β2 + β3)

=β3β12 +
1
2

∑
d6=2

cd
d− 2

qd1q2q3β10 + q2
1q2q3β12

+ (2q2
1q2q3 +

∑
d 6=2

cd
(d− 2)2

qd1q2q3)(β11 + β12) + q1q2β2.

We define

ξ0(q) =
∑
d

cdq
d, ξ1(q) =

∑
d 6=2

cd
d− 2

qd, ξ2(q) =
∑
d6=2

cd
(d− 2)2

qd,

then

β3 ∗ β12 =β3β12 +
1
2
ξ1(q1)q2q3β10 + q2

1q2q3β12

+ (2q2
1q2q3 + ξ2(q1)q2q3)(β11 + β12) + q1q2β2

=β3β12 + q1q2β9 ∗ β11 +
1
2
ξ1(q1)q2q3β10

+ (2q2
1q2q3 + ξ2(q1)q2q3)β11 + (2q2

1q2q3 + ξ2(q1)q2q3)β12.

5.4 Presentation of Quantum Product

Suppose for a smooth varietyX, H2(X,Z) is freely generated by effective classes q1, · · · , qk, qk+1, · · · ,

qk+l, where degqi = 0, for i = 1, · · · , k, and degqk+j ≥ 1, for j = 1, · · · , l, where here degqi means∫
qi
c1(X). Then quantum product of X is closed when restricted to the subring H∗(X,Q) ⊗

Q[qk+1, · · · , qk+l][[q1, · · · , qk]] in the quantum cohomology ring H∗(X,Q) ⊗ Q[[q1, · · · , qk+l]] and
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it is obvious that to determine the ring structure of the latter, it is sufficient to determine the

structure of the former. But first we give a name to it.

Definition 5.4.1. Let QH∗(X) = H∗(X,Q)⊗Q[qk+1, · · · , qk+l][[q1, · · · , qk]]. We still call this ring

the (small) quantum cohomology ring.

Suppose

H∗(X,Q) = Q[Z1, · · · , Zn]/(f1, · · · , fs),

is a presentation of the cohomology ring of X, where Z1, · · · , Zn are liftings of some basis elements

with respective degrees and form a set of generators in H∗(X,Q) and f1, · · · , fs are homogeneous

generators for the ideal of relations.

Let

Q(q) = Q[qk+1, · · · , qk+l][[q1, · · · , qk]],

Q(q, Z) = Q[qk+1, · · · , qk+l, Z1, · · · , Zn][[q1, · · · , qk]].

Then we have the following proposition, which is a modification of a result from [16].

Proposition 5.4.2. Let f ′1, · · · , f ′s be homogeneous elements in Q(q, Z) such that

(i)f ′i(0, · · · , 0, Z1, · · · , Zn) = fi(Z1, · · · , Zn) in Q(q, Z),

(ii)f ′i(q1, · · · , qk+l, Z1, · · · , Zn) = 0 in QH∗(X).

Then the canonical map

φ : Q(q, Z)/(f ′1, · · · , f ′s) −→ QH∗(X)

is surjective. If, in addition, Q(q, Z)/(f ′1, · · · , f ′s) is finitely generated over Q(q), then this map is

an isomorphism.

Before we prove the proposition, we first state

Lemma 5.4.3. Assume that M is a non-negatively graded module over a graded ring R, I is an

ideal in R generated by elements of positive degrees. Then we have
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(i) If IM = M , then M = 0.

(ii) If N ⊂M is a graded submodule and M = N + IM , then M = N .

Proof. (i) Suppose otherwise M 6= 0. Then we can take a nontrivial homogeneous element, say a, in

M of the lowest degree. From IM = M , a can be written as a linear combination of elements with

coefficients in I. But these coefficients have positive degrees by the assumption on I so the elements

of M appearing in this combination must have lower degrees. This constitutes a contradiction, thus

finishing the proof.

(ii) follows from (i) applied to M/N .

Now we begin the proof of the proposition.

Proof. First we note if ψ : M → N is a graded homomorphism between two finitely generated

non-negatively graded Q(q, Z)-modules such that the induced map

M/(q1, · · · , qk)
(qk+1, · · · , qk+l)

→ N/(q1, · · · , qk)
(qk+1, · · · , qk+l)

is surjective, then

M/(q1, · · · , qk)→ N/(q1, · · · , qk),

is also surjective by (ii) of the above lemma since (qk+1, · · · , qk+l) is an ideal in Q(q, Z) generated

by elements of positive degrees . By Nakayama’s lemma, ψ : M → N is surjective since (q1, · · · , qk)

is contained in the Jacobson radical of Q(q, Z). This observation combined with hypothesis (i)

gives rise to the surjectivity of the map φ in the proposition.

Now assume that Q(q, Z)/(f ′1, · · · , f ′s) is finitely generated over Q(q). Suppose Wi, i = 1, · · · ,m

are lifted elements to Q(q, Z)/(f ′1, · · · , f ′s) from basis elements ofH∗(X,Q), wherem = dimH∗(X,Q).

Then the analogous argument as above shows that they generate Q(q, Z)/(f ′1, · · · , f ′s) as a Q(q)-

module. In other words, this module is generated by at most m elements. On the other hand, it is

obvious that QH∗(X) is of rank m as a free Q(q)-module. Then that φ is an isomorphism results

from the following lemma.
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Lemma 5.4.4. For a ring R, if M is generated by r elements as an R-module and there is a

surjective map M → Rr, then M is free of rank r.

Proof. We use f to denote the map M → Rr. That M is generated by r elements as an R-module

means there is a surjective map g : Rr →M . Then the composition fg : Rr → Rr is also surjective.

Now theorem 2.4 in [14] tells us that this composition must be injective, which forces g to be an

injection hence an isomorphism, which in turn implies that f is an isomorphism.

Now we apply this result to the computation of quantum cohomology ring of F [2]. First we note

degq1 = 0, degq2 = 1, degq3 = 2, so here Q(q) = Q[q2, q3][[q1]]. We have derived a set of generators

of the ideal of relations for H∗(F [2],Q), which are listed at the beginning of §5.1. What we need to

do in this section is to find the set f ′i satisfying the conditions in the proposition using the results

we have obtained so far, thus completely determining the ring structure of QH∗(F [2]).

We start with the relation P1 : β2
10− 2β10β11− 3β10β12 + 2β2

12 + 4β11β12 = 0. In the expression

(5.1)

β10 ∗ β10 = β2
10 + 8

∑
d6=0

dqd1β4 + 12
∑
d 6=0

dqd1β5,

we plug in

β4 =
1
2
β10 ∗ β11, β5 =

1
2
β10 ∗ β12,

from (5.2) to get

β2
10 = β10 ∗ β10 − 4

∑
d1 6=0

d1q
d1
1 β10 ∗ β11 − 6

∑
d1 6=0

d1q
d1
1 β10 ∗ β12.

Also,

β10β11 = β10 ∗ β11, β10β12 = β10 ∗ β12,

β2
12 = β12 ∗ β12 − q1q2β11, β11β12 = β11 ∗ β12 + q1q2β11,
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Substituting all these into the equation P1, we obtain one relation

R1 : β10 ∗ β10 − 2β10 ∗ β11 − 3β10 ∗ β12 + 2β12 ∗ β12 + 4β11 ∗ β12

+ 2q1q2β11 − 4
∑
d1 6=0

d1q
d1
1 β10 ∗ β11 − 6

∑
d1 6=0

d1q
d1
1 β10 ∗ β12 = 0.

Then working with P2 : β10β
2
12 = 0, we see

β10 ∗ β12 ∗ β12 = β10 ∗ (β12 ∗ β12)

=β10 ∗ (β2
12 + q1q2β11) = β7 ∗ β10 + q1q2β10 ∗ β11

=β7β10 −
1
2
ψ0(q1)q2β10 ∗ β11 − ψ1(q1)q2β11 ∗ β11 + ψ1(q1)q1q

2
2β11

− ψ1(q1)q2β9 + 2φ0(q1)q2q3 + 2ψ1(q1)q1q2q3 + q1q2β10 ∗ β11

=β10β
2
12 + (q1q2 −

1
2
ψ0(q1)q2)β10 ∗ β11 − ψ1(q1)q2β11 ∗ β11

+ ψ1(q1)q1q
2
2β11 − ψ1(q1)q2β9 + 2φ0(q1)q2q3 + 2ψ1(q1)q1q2q3,

then we get the relation

R2 : β10∗β12 ∗ β12 − (q1q2 −
1
2
ψ0(q1)q2)β10 ∗ β11 + ψ1(q1)q2β11 ∗ β11

− ψ1(q1)q1q
2
2β11 + ψ1(q1)q2β9 − 2φ0(q1)q2q3 − 2ψ1(q1)q1q2q3 = 0.

For P3 : β3
12 = 0,

β12 ∗ β12 ∗ β12 = β12 ∗ (β2
12 + q1q2β11)

=β7 ∗ β12 + q1q2β11 ∗ β12

=β7β12 +
1
4
ψ1(q1)q2β10 ∗ β11 + (q1q2 +

1
2
ψ2(q1)q2)β11 ∗ β11 + 2q1q2β11 ∗ β12

+ (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11 + (−q1q2 +

1
2
ψ2(q1)q2)β9 − ψ2(q1)q1q2q3

− φ1(q1)q2q3 + q1q2β11 ∗ β12

=β3
12 +

1
4
ψ1(q1)q2β10 ∗ β11 + (q1q2 +

1
2
ψ2(q1)q2)β11 ∗ β11 + 3q1q2β11 ∗ β12

+ (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11 + (−q1q2 +

1
2
ψ2(q1)q2)β9 − ψ2(q1)q1q2q3 − φ1(q1)q2q3,
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then we get the relation

R3 : β12∗β12 ∗ β12 −
1
4
ψ1(q1)q2β10 ∗ β11 − (q1q2 +

1
2
ψ2(q1)q2)β11 ∗ β11

− 3q1q2β11 ∗ β12 − (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11

+ (q1q2 −
1
2
ψ2(q1)q2)β9 + ψ2(q1)q1q2q3 + φ1(q1)q2q3 = 0.

For P4 : β11β
2
12 − 2β9β12 = 0,

β11 ∗ β12 ∗ β12 − 2β9 ∗ β12

=β11 ∗ (β2
12 + q1q2β11)− 2(β9β12 + 2q2

1q2q3)

=β7 ∗ β11 + q1q2β11 ∗ β11 − 2β9β12 − 4q2
1q2q3

=β7β11 −
1
4
ψ1(q1)q2β10 ∗ β11 − (q1q2 +

1
2
ψ2(q1)q2)β11 ∗ β11 − 2q1q2β11 ∗ β12

+ (−q2
1q

2
2 +

1
2
ψ2(q1)q1q

2
2)β11 + (q1q2 −

1
2
ψ2(q1)q2)β9 + 2q2

1q2q3

+ ψ2(q1)q1q2q3 + q1q2β11 ∗ β11 − 2β9β12 − 4q2
1q2q3

=β11β
2
12 − 2β9β12 −

1
4
ψ1(q1)q2β10 ∗ β11 −

1
2
ψ2(q1)q2β11 ∗ β11 − 2q1q2β11 ∗ β12

+ (−q2
1q

2
2 +

1
2
ψ2(q1)q1q

2
2)β11 + (q1q2 −

1
2
ψ2(q1)q2)β9 − 2q2

1q2q3 + ψ2(q1)q1q2q3,

so we get the relation

R4 : β11∗β12 ∗ β12 − 2β9 ∗ β12 +
1
4
ψ1(q1)q2β10 ∗ β11 +

1
2
ψ2(q1)q2β11 ∗ β11

+ 2q1q2β11 ∗ β12 + (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11

+ (−q1q2 +
1
2
ψ2(q1)q2)β9 + 2q2

1q2q3 − ψ2(q1)q1q2q3 = 0.
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For P5 : β10β
2
11 + 2β9β10 = 0,

β10 ∗ β11 ∗ β11 + 2β9 ∗ β10

=β10 ∗ (β2
11 + q1q2β11 + 2q1q3) + 2β9β10

=β10 ∗ (β6 − β8 − β9 + q1q2β11 + 2q1q3) + 2β9β10

=β6 ∗ β10 − β8 ∗ β10 − β9 ∗ β10 + q1q2β10 ∗ β11 + 2q1q3β10 + 2β9β10

=β6β10 + ζ−1(q1)q3β10 − 2ζ0(q1)q3β12 − β8β10 −
1
2
ψ0(q1)q2β10 ∗ β11

− ψ1(q1)q2β11 ∗ β11 + ψ1(q1)q1q
2
2β11 − ψ1(q1)q2β9 + 2ψ1(q1)q1q2q3

− β9β10 + q1q2β10 ∗ β11 + 2q1q3β10 + 2β9β10

=β10β
2
11 + 2β9β10 + ζ−1(q1)q3β10 − 2ζ0(q1)q3β12

− 1
2
ψ0(q1)q2β10 ∗ β11 − ψ1(q1)q2β11 ∗ β11 + ψ1(q1)q1q

2
2β11

− ψ1(q1)q2β9 + 2ψ1(q1)q1q2q3 + q1q2β10 ∗ β11 + 2q1q3β10,

so we get the relation

R5 : β10∗β11 ∗ β11 + 2β9 ∗ β10 − (2q1q3 + ζ−1(q1)q3)β10 + 2ζ0(q1)q3β12

+ (
1
2
ψ0(q1)q2 − q1q2)β10 ∗ β11 + ψ1(q1)q2β11 ∗ β11

− ψ1(q1)q1q
2
2β11 + ψ1(q1)q2β9 − 2ψ1(q1)q1q2q3 = 0.
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For P6 : β10β11β12 − 2β9β10 = 0,

β10 ∗ β11 ∗ β12 − 2β9 ∗ β10

=β10 ∗ (β11β12 − q1q2β11)− 2β9β10

=β10 ∗ (β8 + β9)− q1q2β10 ∗ β11 − 2β9β10

=β8 ∗ β10 + β9 ∗ β10 − q1q2β10 ∗ β11 − 2β9β10

=β8β10 +
1
2
ψ0(q1)q2β10 ∗ β11 + ψ1(q1)q2β11 ∗ β11

− ψ1(q1)q1q
2
2β11 + ψ1(q1)q2β9 − 2ψ1(q1)q1q2q3

+ β9β10 − q1q2β10 ∗ β11 − 2β9β10

=β10β11β12 − 2β9β10 +
1
2
ψ0(q1)q2β10 ∗ β11 + ψ1(q1)q2β11 ∗ β11

− ψ1(q1)q1q
2
2β11 + ψ1(q1)q2β9 − 2ψ1(q1)q1q2q3 − q1q2β10 ∗ β11,

so we get the relation

R6 : β10∗β11 ∗ β12 − 2β9 ∗ β10 + (q1q2 −
1
2
ψ0(q1)q2)β10 ∗ β11

− ψ1(q1)q2β11 ∗ β11 + ψ1(q1)q1q
2
2β11 − ψ1(q1)q2β9 + 2ψ1(q1)q1q2q3 = 0.

For P7 : β2
11β12 − 2β9β11 + β9β12 = 0,

β11 ∗ β11 ∗ β12 − 2β9 ∗ β11 + β9 ∗ β12

=β11 ∗ (β11β12 − q1q2β11)− 2(β9β11 + q1q3β12) + β9β12 + 2q2
1q2q3

=β8 ∗ β11 + β9 ∗ β11 − q1q2β11 ∗ β11 − 2q1q3β12 + 2q2
1q2q3 − 2β9β11 + β9β12

=β8β11 +
1
4
ψ1(q1)q2β10 ∗ β11 +

1
2
ψ2(q1)q2β11 ∗ β11 + q1q2β11 ∗ β12

+ (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11 − q1q3β12 + (

1
2
ψ2(q1)q2 − q1q2)β9

− ψ2(q1)q1q2q3 + β9β11 − q1q2β11 ∗ β11 + 2q2
1q2q3 − 2β9β11 + β9β12
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=β2
11β12 − 2β9β11 + β9β12 +

1
4
ψ1(q1)q2β10 ∗ β11 + (−q1q2 +

1
2
ψ2(q1)q2)β11 ∗ β11

+ q1q2β11 ∗ β12 + (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11 − q1q3β12

+ (
1
2
ψ2(q1)q2 − q1q2)β9 + 2q2

1q2q3 − ψ2(q1)q1q2q3,

so we get the relation

R7 : β11∗β11 ∗ β12 − 2β9 ∗ β11 + β9 ∗ β12 −
1
4
ψ1(q1)q2β10 ∗ β11

+ (q1q2 −
1
2
ψ2(q1)q2)β11 ∗ β11 − q1q2β11 ∗ β12 − (q2

1q
2
2 −

1
2
ψ2(q1)q1q

2
2)β11

+ q1q3β12 + (q1q2 −
1
2
ψ2(q1)q2)β9 + ψ2(q1)q1q2q3 − 2q2

1q2q3 = 0.

For P8 : β3
11 + 3β9β11 = 0,

β11 ∗ β11 ∗ β11 + 3β9 ∗ β11

=β11 ∗ (β2
11 + q1q2β11 + 2q1q3) + 3(β9β11 + q1q3β12)

=β6 ∗ β11 − β8 ∗ β11 − β9 ∗ β11 + q1q2β11 ∗ β11

+ 2q1q3β11 + 3β9β11 + 3q1q3β12

=β6β11 + q1q2β11 ∗ β11 + q1q2β11 ∗ β12 −
1
2
ζ0(q1)q3β10

+ (3q1q3 + ζ1(q1)q3)β12 + 2q1q3β11 − 2q2
1q2q3

− [β8β11 +
1
4
ψ1(q1)q2β10 ∗ β11 +

1
2
ψ2(q1)q2β11 ∗ β11 + q1q2β11 ∗ β12

+ (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11 + q1q3β12 + (

1
2
ψ2(q1)q2 − q1q2)β9 − ψ2(q1)q1q2q3]

− (β9β11 + q1q3β12) + q1q2β11 ∗ β11 + 2q1q3β11 + 3β9β11 + 3q1q3β12

=β3
11 + 3β9β11 + (2q1q2 −

1
2
ψ2(q1)q2)β11 ∗ β11 −

1
2
ζ0(q1)q3β10

+ (4q1q3 + ζ1(q1)q3)β12 −
1
4
ψ1(q1)q2β10 ∗ β11 + (4q1q3 − q2

1q
2
2 +

1
2
ψ2(q1)q1q

2
2)β11

− (
1
2
ψ2(q1)q2 − q1q2)β9 + ψ2(q1)q1q2q3 − 2q2

1q2q3,
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so we get the relation

R8 : β11∗β11 ∗ β11 + 3β9 ∗ β11 +
1
4
ψ1(q1)q2β10 ∗ β11 + (

1
2
ψ2(q1)q2 − 2q1q2)β11 ∗ β11

+
1
2
ζ0(q1)q3β10 + (q2

1q
2
2 − 4q1q3 −

1
2
ψ2(q1)q1q

2
2)β11 − (4q1q3 + ζ1(q1)q3)β12

+ (
1
2
ψ2(q1)q2 − q1q2)β9 + 2q2

1q2q3 − ψ2(q1)q1q2q3 = 0.

For P9 : β9β11β12 − β2
9 = 0,

β9 ∗ β11 ∗ β12 − β9 ∗ β9 = (β9 ∗ β12) ∗ β11 − β9 ∗ β9

=β3 ∗ β11 + 2q2
1q2q3β11 − (β2

9 + q2
1q2q3β11 + q2

1q2q3β12)

=β3β11 + q1q3β12 ∗ β12 − q1q2β9 ∗ β11 − q2
1q2q3β11

+ q2
1q2q3β12 + 2q2

1q2q3β11 − (β2
9 + q2

1q2q3β11 + q2
1q2q3β12)

=β9β11β12 − β2
9 + q1q3β12 ∗ β12 − q1q2β9 ∗ β11,

so we get the relation

R9 : β9∗β11 ∗ β12 − β9 ∗ β9 − q1q3β12 ∗ β12 + q1q2β9 ∗ β11 = 0.

We use f ′1, f
′
2, · · · , f ′9 to denote the polynomials on the left-hand sides of the equationsR1, R2, · · · ,

R9, respectively. Then by the above proposition we have the surjective map from the ring

Q[β9, β10, β11, β12, q2, q3][[q1]]/(f ′1, f
′
2, · · · , f ′9) to the quantum cohomology ring. To prove this map

is an isomorphism from the above proposition, we need

Lemma 5.4.5. Q[β9, β10, β11, β12, q2, q3][[q1]]/(f ′1, f
′
2, · · · , f ′9) is finitely generated over Q[q2, q3][[q1]].

Proof. From f ′1, f
′
2, · · · , f ′8, we see that any power of β10, β11, β12 of degree 3 in the quotient ring

can be reduced to a linear combination over Q[q2, q3][[q1]] of 1, β9, β10, β11, β12 and products among

β9, β10, β11, β12 of the second degree excluding β2
9 and β2

10, in which the highest degree terms with

β9 are β9βi, i = 10, 11, 12. If continued, for any power of β10, β11, β12 of degree 4, the highest degree

terms with β9 are β9βiβj , i, j = 10, 11, 12. By iteration, any degree n monomial in β10, β11, β12 in
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the quotient ring can be expressed as a linear combination of elements of the forms

(L1) βk9 , β
k
9β10, β

k
9β11, β

k
9β12, β

k
9β10β11, β

k
9β10β12, β

k
9β11β12, β

k
9β

2
11, β

k
9β

2
12,

where k ≥ 0 and when n ≥ 3, the degree of β9 appearing in this combination is at most the

integer part of n−1
2 , or [n−1

2 ]. Here the word ”degree” means that as polynomials. Obviously, any

monomial in β9, β10, β11, β12 in the quotient ring can also be expressed by these elements.

On the other hand from f ′9, we see

β2
9 = β9β11β12 − q1q3β

2
12 + q1q2β9β11,

so recursively,

β3
9 = β2

9β11β12 − q1q3β9β
2
12 + q1q2β

2
9β11

= β9β
2
11β

2
12 − q1q3β11β

3
12 + q1q2β9β

2
11β12 − q1q3β9β

2
12 + q1q2β

2
9β11,

β4
9 = β2

9β
2
11β

2
12 − q1q3β9β11β

3
12 + q1q2β

2
9β

2
11β12 − q1q3β

2
9β

2
12 + q1q2β

3
9β11

= β9β
3
11β

3
12 − q1q3β

2
11β

4
12 + q1q2β9β

3
11β

2
12 − q1q3β9β11β

3
12

+ q1q2β
2
9β

2
11β12 − q1q3β

2
9β

2
12 + q1q2β

3
9β11

From f ′3, we know

β3
12 =

1
4
ψ1(q1)q2β10β11 + (q1q2 +

1
2
ψ2(q1)q2)β2

11

+ 3q1q2β11β12 + (q2
1q

2
2 −

1
2
ψ2(q1)q1q

2
2)β11

− (q1q2 −
1
2
ψ2(q1)q2)β9 − ψ2(q1)q1q2q3 − φ1(q1)q2q3.
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Plugging this in the equation for β4
9 , we get

β4
9 =

1
4
ψ1(q1)q2β9β10β

4
11 + (q1q2 +

1
2
ψ2(q1)q2)β9β

5
11

+ 3q1q2β9β
4
11β12 + (q2

1q
2
2 −

1
2
ψ2(q1)q1q

2
2)β9β

4
11

− (q1q2 −
1
2
ψ2(q1)q2)β2

9β
3
11 − (ψ2(q1)q1q2q3 + φ1(q1)q2q3)β9β

3
11

− q1q3β
2
11β

4
12 + q1q2β9β

3
11β

2
12 − q1q3β9β11β

3
12 + q1q2β

2
9β

2
11β12

− q1q3β
2
9β

2
12 + q1q2β

3
9β11.

All the monomials appearing in the right-hand side of this equation have nontrivial coefficients in

q2, q3, which implies their degrees as in quantum cohomology ring are at least 1. When their parts

of products of β10, β11, β12 are reduced by f ′1, f
′
2, · · · , f ′8 described at the beginning of this proof,

we realize β4
9 as a linear combination over Q[q2, q3][[q1]] of elements of the following forms

(L2) β3
9 , β

3
9βi, β

2
9 , β

2
9βj , β

2
9βkβl, β9, β9βj , β9βkβl, 1, βj , βkβl,

where i, j, k, l = 10, 11, 12. Notice we don’t need the term β3
9βiβj in this list. If we continue

the iterations as above and whenever necessary we replace β4
9 by the above expression but without

reduction on the parts of various products of β10, β11, β12, then we get βn+3
9 as a linear combination

of monomials of the form

βl9β
l1
10β

l2
11β

l3
12,

for 0 ≤ l ≤ 3 and 0 ≤ l1 + l2 + l3 ≤ 2n. By the reduction at the beginning of this proof, βl110β
l2
11β

l3
12

can be reduced to a combination of elements in the list of (L1) with the degree of β9 not bigger

than [ l1+l2+l3−1
2 ] ≤ [2n−1

2 ] = n− 1, so βn+3
9 is reduced to a linear combination of monomials of the

form

βl9β
l1
10β

l2
11β

l3
12,

for 0 ≤ l ≤ n+ 2 and 0 ≤ l1 + l2 + l3 ≤ 2.
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Now we suppose powers of β9 of degrees lower than n + 3 can be represented as linear combi-

nations of elements

(L3) β3
9 , β

3
9βi, β

3
9βiβj , β

2
9 , β

2
9βj , β

2
9βkβl, β9, β9βj , β9βkβl, 1, βj , βkβl,

where i, j, k, l = 10, 11, 12. Then to show βn+3
9 can be represented by these elements, since β4

9 can

be expressed by elements in (L2) hence in (L3), we are left with two terms β4
9βi, β

4
9βiβj to consider.

In turn, if we look back at the list (L2), this is reduced to β3
9βi, β

3
9βjβk, β

3
9βjβkβl among other

terms already in (L3). The first two terms are good in (L3). Since βjβkβl can be expressed by

elements

β9, β9βi, 1, βj , βjβk,

where i, j, k = 10, 11, 12, β3
9βjβkβl is reduced to terms β4

9 , β
4
9βi among others, which are good as

reasoned above. All together by induction, βn+3
9 can be written as a linear combination of elements

in (L3). Combined with the list (L1), the quotient ring is generated by elements

βl9β
l1
10β

l2
11β

l3
12,

where 0 ≤ l ≤ 3 and 0 ≤ l1 + l2 + l3 ≤ 4.

Summarizing these results, we conclude with the following

Theorem 5.4.6. The quantum cohomology ring QH∗(F [2]) is isomorphic to the quotient ring

Q[β9, β10, β11, β12, q2, q3][[q1]]/(f ′1, f
′
2, · · · , f ′9).

For Hirzebruch surfaces Fa, it is known that Hilbert schemes F [2]
a are symplectically isomorphic

according to whether a is even or odd. Since F0 is the same as P1 × P1, together with the result

of Pontoni[16], the quantum cohomology of the Hilbert schemes of two points for all Hirzebruch

surfaces are determined.
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