学位论文详细信息
Efficient data to decision pipelines for embedded and social sensing
Social Sensing;Data Distillation;Data to Decision;Big Data;Data Science
Le, Hieu
关键词: Social Sensing;    Data Distillation;    Data to Decision;    Big Data;    Data Science;   
Others  :  https://www.ideals.illinois.edu/bitstream/handle/2142/42487/Hieu_Le.pdf?sequence=1&isAllowed=y
美国|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

This dissertation presents results of our studies in making data to decision pipelines for embedded and social sensing efficient. Due to the pervasive presence of wired sensors, wireless sensors, and mobile devices, the amount of data about the physical world (environmental measurements, traffic, etc.) and human societies (news, trends, conversations, intelligence reports, etc.) reaches an unprecedented rate and volume. This motivates us to optimize the way information is collected from sensors and social entities. Two challenges are addressed: (i) How can we gather data such that throughput is maximized given the physical constraints of the communication medium? and (ii) How can we process inherently unreliable data, generated by large networks of information and social sources? We present some essential solutions addressing these challenges in this dissertation. The dissertation is organized in two parts. Part I presents our solution to maximizing bit-level data throughput by utilizing multiple radio channels in applications equiped with wireless sensors. Part II presents our solution to dealing with the large amount of information contributed by unvetted sources.

【 预 览 】
附件列表
Files Size Format View
Efficient data to decision pipelines for embedded and social sensing 6039KB PDF download
  文献评价指标  
  下载次数:30次 浏览次数:35次