学位论文详细信息
Open-source high-level synthesis of tensorflow dataflow graphs using LegUp
high level synthesis;machine learning;tensorflow;legup
Umenthum, Kenneth Richard ; Chen ; Deming
关键词: high level synthesis;    machine learning;    tensorflow;    legup;   
Others  :  https://www.ideals.illinois.edu/bitstream/handle/2142/104949/UMENTHUM-THESIS-2019.pdf?sequence=1&isAllowed=y
美国|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

A flow is presented for synthesizing Tensorflow computation graphs into FPGA accelerators using the open-source high-level synthesis (HLS) tool LegUp. The Tensorflow computation graph is represented translated from an intermediate representation in Tensorflow's Accelerated Linear Algebra (XLA) compiler called High Level Optimizer (HLO). This is translated into LLVM intermediate representation (IR) using a modified version of XLA's CPU backend. These modifications enable users to leverage IP modules for computation-intensive operations. For a simple instance of matrix multiply, using even a naively implemented IP is shown to give a 1.7x speedup over baseline accelerators synthesized from the original CPU backend.

【 预 览 】
附件列表
Files Size Format View
Open-source high-level synthesis of tensorflow dataflow graphs using LegUp 308KB PDF download
  文献评价指标  
  下载次数:25次 浏览次数:30次