This thesis examines the potential long-term impacts of satellite megaconstellations in Low Earth Orbit, with a focus on how post-mission disposal rates for megaconstellations will affect their contributions to orbital debris over the next 150 years. A new, medium-fidelity simulation for modeling orbital debris is developed and described, and several test cases are run with SpaceX’s Starlink megaconstellation and varying success rates for post-mission disposal. In cases where Starlink’s post-mission disposal rate is insufficient to prevent debris growth, varying amounts of active debris removal are explored as a potential mitigation measure. It is shown that LEO debris levels will grow at almost double their baseline rate if Starlink meets only the minimum regulatory requirements for post-mission disposal, and even relatively high rates of active debris removal cannot always return the LEO environment to its non-megaconstellation baseline. Still, the potential exists to minimize the debris-generating effects of large megaconstellations like Starlink if post-mission disposal rates of 95% or better can be achieved.
【 预 览 】
附件列表
Files
Size
Format
View
Long-term effects of satellite megaconstellations on the debris environment in low earth orbit