学位论文详细信息
The role of the plasmon resonance for enhanced optical forces
Surface plasmon resonance;Laser manipulation (Nuclear physics);Micrurgy
Ploschner, Martin ; Dholakia, Kishan ; Dholakia, Kishan
University:University of St Andrews
Department:Physics & Astronomy (School of)
关键词: Surface plasmon resonance;    Laser manipulation (Nuclear physics);    Micrurgy;   
Others  :  https://research-repository.st-andrews.ac.uk/bitstream/handle/10023/3189/MartinPloschnerPhDThesis.pdf?sequence=6&isAllowed=y
来源: DR-NTU
PDF
【 摘 要 】

Optical manipulation of nanoscale objects is studied with particular emphasis on the role of plasmon resonance for enhancement of optical forces. The thesis provides an introduction to plasmon resonance and its role in confinement of light to a sub-diffraction volume. The strong light confinement and related enhancement of optical forces is then theoretically studied for a special case of nanoantenna supporting plasmon resonances. The calculation of optical forces, based on the Maxwell stress tensor approach, reveals relatively weak optical forces for incident powers that are used in typical realisations of trapping with nanoantenna. The optical forces are so weak that other non-optical effects should be considered to explain the observed trapping. These effects include heating induced convection, thermoporesis and chemical binding.The thesis also studies the optical effects of plasmon resonances for a fundamentally different application - size-based optical sorting of gold nanoparticles. Here, the plasmon resonances are not utilised for sub-diffraction light confinement but rather for their ability to increase the apparent cross-section of the particles for their respective resonant sizes. Exploiting these resonances, we realise sorting in a system of two counter-propagating evanescent waves, each at different wavelength that selectively guide gold nanoparticles of different sizes in opposite directions. The method is experimentally demonstrated for bidirectional sorting of gold nanoparticles of either 150 or 130 nm in diameter from those of 100 nm in diameter within a mixture.We conclude the thesis with a numerical study of the optimal beam-shape for optical sorting applications. The developed theoretical framework, based on the force optical eigenmode method, is able to find an illumination of the back-focal plane of the objective such that the force difference between nanoparticles of various sizes in the sample plane is maximised.

【 预 览 】
附件列表
Files Size Format View
The role of the plasmon resonance for enhanced optical forces 15662KB PDF download
  文献评价指标  
  下载次数:45次 浏览次数:27次