学位论文详细信息
Vegetation Type and Degredation Classification on the Mongolian Steppe Using Random Forests
Random Forest;Steppe;Mongolia;Classification;Natural Resources and Environment
Liu, WeiBrown, Daniel ;
University of Michigan
关键词: Random Forest;    Steppe;    Mongolia;    Classification;    Natural Resources and Environment;   
Others  :  https://deepblue.lib.umich.edu/bitstream/handle/2027.42/99530/Wei%20Liu%20Thesis%20August%202013.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

Creating consistent supervised vegetation classifications in different countrieswhere training data are of different levels of quality and detail is challenging butimportant. For example, mapping steppe types and degradation of Mongolia and InnerMongolia Autonomous Region (IMAR), China, using the same classification schemewould be helpful for doing comparative studies between the two regions andacquiring a better understanding of how country level differences affect vegetation onthe Mongolian Plateau.Steppe and degradation maps, created through on-screen digitizing that combinedimage and ground information as input, were available in IMAR but not inMongolia. We explored supervised classification using Random Forests (RF) toidentify a reasonable sampling and training strategy and applied identical methodsto classify remotely sensed images (Landsat Thematic Mapper 5) in IMAR andMongolia using the same classification systems for the two countries in threeecological regions (meadow steppe, typical steppe and desert steppe). A number ofchallenges limit our ability to extend classifications trained in IMAR to Mongolia forcreating consistent vegetation maps.

【 预 览 】
附件列表
Files Size Format View
Vegetation Type and Degredation Classification on the Mongolian Steppe Using Random Forests 5119KB PDF download
  文献评价指标  
  下载次数:45次 浏览次数:36次