学位论文详细信息
Bayesian Network Representing System Dynamics in Risk Analysis of Nuclear Systems.
RELAP5;Surrogate;Risk Analysis;Nuclear Engineering and Radiological Sciences;Engineering;Nuclear Engineering & Radiological Sciences
Varuttamaseni, AthiYoungblood, Robert W. ;
University of Michigan
关键词: RELAP5;    Surrogate;    Risk Analysis;    Nuclear Engineering and Radiological Sciences;    Engineering;    Nuclear Engineering & Radiological Sciences;   
Others  :  https://deepblue.lib.umich.edu/bitstream/handle/2027.42/89759/avarutta_1.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

A dynamic Bayesian network (DBN) model is used in conjunction with the alternating conditional expectation (ACE) regression method to analyze the risk associated with the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed operation in the Zion-1 nuclear power plant. The use of the DBN allows the joint probability distribution to be factorized, enabling the analysis to be done on many simpler network structures rather than on one complicated structure. The construction of the DBN model assumes conditional independence relations among certain key reactor parameters. The choice of parameter to model is based on considerations of the macroscopic balance statements governing the behavior of the reactor under a quasi-static assumption. The DBN is used to relate the peak clad temperature to a set of independent variables that are known to be important in determining the success of the feed and bleed operation. A simple linear relationship is then used to relate the clad temperature to the core damage probability. To obtain a quantitative relationship among different nodes in the DBN, surrogates of the RELAP5 reactor transient analysis code are used. These surrogates are generated by applying the ACE algorithm to output data obtained from about 50 RELAP5 cases covering a wide range of the selected independent variables. These surrogates allow important safety parameters such as the fuel clad temperature to be expressed as a function of key reactor parameters such as the coolant temperature and pressure together with important independent variables such as the scram delay time.The time-dependent core damage probability is calculated by sampling the independent variables from theirprobability distributions and propagate the information up through the Bayesian network to give the clad temperature. With the knowledge of the clad temperature and the assumption that the core damage probability has a one-to-one relationship to it, we have calculated the core damage probably as a function of transient time. The use of the DBN model in combination with ACE allows risk analysis to be performed with much less effort than if the analysis were done using the standard techniques.

【 预 览 】
附件列表
Files Size Format View
Bayesian Network Representing System Dynamics in Risk Analysis of Nuclear Systems. 5095KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:28次