学位论文详细信息
Analytic Methods for Diophantine Problems.
Analytic Number Theory;Circle Method;Mathematics;Science;Mathematics
Spencer, Craig ValereMilicevic, Djordje ;
University of Michigan
关键词: Analytic Number Theory;    Circle Method;    Mathematics;    Science;    Mathematics;   
Others  :  https://deepblue.lib.umich.edu/bitstream/handle/2027.42/60823/cvspenc_1.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

This thesis studies applications of the circle method to various Diophantine problems.In particular, we explore the following four themes.First, we develop the Bentkus-G;;otze-Freeman variant of the Davenport-Heilbronn method for function fields in order to count $mathbb{F}_q[t]$-solutions to diagonal Diophantine inequalities in $mathbb{F}_q((1/t)).$Suppose that $k$ and $s$ are natural numbers with $k>1,$$$s ge frac{4}{3}k(log k+log log k)+O(k),$$and $ch (mathbb{F}_q)nmid k.$Let $tau$ be a fixed integer, and let $lambda_1,ldots,lambda_s$ be fixed non-zero elements of $mathbb{F}_q ((1/t)),$ not all in $mathbb{F}_q(t)$-rational ratio.Suppose also that the equation$$lambda_1z_1^k+cdots+lambda_sz_s^k=0$$has a non-trivial solution $mathbf{z}$ in $mathbb{F}_q((1/t))^s.$Then, for all sufficiently large positive real numbers $P$, the number of $mathbb{F}_q[t]$-solutions $N(P;boldsymbol{lambda})$ of $$ord (lambda_1x_1^k+cdots+lambda_sx_s^k)

【 预 览 】
附件列表
Files Size Format View
Analytic Methods for Diophantine Problems. 466KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:3次