学位论文详细信息
EPIGENOMIC SIGNATURES OF NEURONAL DIVERSITY IN THE MAMMALIAN BRAIN
neurons;DNA methylation;chromatin;Neuroscience
Mo, AlisaBlackshaw, Seth ;
Johns Hopkins University
关键词: neurons;    DNA methylation;    chromatin;    Neuroscience;   
Others  :  https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/59309/MO-DISSERTATION-2017.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: JOHNS HOPKINS DSpace Repository
PDF
【 摘 要 】

Neuronal diversity is essential for mammalian brain function but poses a challenge to molecular profiling. To address the need for tools that facilitate cell type-specific epigenomic studies, we developed the first affinity purification approach to isolate nuclei from genetically-defined cell types in a mammal. We combine this technique with next generation sequencing to show that three subtypes of neocortical neurons have highly distinctive epigenomic landscapes. Over 200,000 regions differ in chromatin accessibility and DNA methylation signatures characteristic of gene regulatory regions. By footprinting and motif analyses, these regions are predicted to bind distinct cohorts of neuron subtype-specific transcription factors. Neuronal epigenomes reflect both past and present gene expression, with DNA hyper-methylation at developmentally critical genes appearing as a novel epigenomic signature in mature neurons. Taken together, our findings link the functional and transcriptional complexity of neurons to their underlying epigenomic diversity.

【 预 览 】
附件列表
Files Size Format View
EPIGENOMIC SIGNATURES OF NEURONAL DIVERSITY IN THE MAMMALIAN BRAIN 22375KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:24次