This thesis aims to improve sales forecasting in the context of passenger airlines. We study two important issues that could potentially improve forecasting accuracy: day-to-day price change rather than price itself, and linking flights that are likely to be considered as pairs for a round trip by passengers; we refer to the latter as the Round-Trip Model (RTM). We find that price change is a significant variable regardless of days remaining to flight in the last three weeks to flight departure, which opens the possibility of planning for revenue maximizing price change patterns. We also find that the RTM can improve the precision of the forecasting models, and provide an improved pricing strategy for planners.In the study of the effect of price change on sales, analysis of variance is applied; finite regression mixture models were tested to identify linked traffic in the two directions and the linked flights on a route in reverse directions; adaptive neuro-fuzzy inference system (ANFIS) is applied to develop comparative models for studying sales effect between price and price change, and one-way versus round-trip models. The price change model demonstrated more robust results with comparable estimation errors, and the concept model for the round-trip with only one linked flight reduced estimation error by 5%. This empirical study is performed on a database with 22,900 flights which was obtained from a major North American passenger airline.
【 预 览 】
附件列表
Files
Size
Format
View
Forecasting seat sales in passenger airlines: introducing the round-trip model