学位论文详细信息
Disinfection By-Product Formation in Drinking Water Treated with Chlorine Following UV Photolysis & UV/H2O2
Civil & Environmental Engineering;Disinfection by-product;Chlorine;UV irradiation;Advanced oxidation process
Adedapo, Remilekun
University of Waterloo
关键词: Civil & Environmental Engineering;    Disinfection by-product;    Chlorine;    UV irradiation;    Advanced oxidation process;   
Others  :  https://uwspace.uwaterloo.ca/bitstream/10012/919/1/rysofowo2005.pdf
瑞士|英语
来源: UWSPACE Waterloo Institutional Repository
PDF
【 摘 要 】
ABSTRACTAs far back as the early 1900?s when it was discovered that water could be a mode of transmitting diseases, chlorine was used to disinfect water. In the 1970?s, the formation of disinfection by-products (DBPs) from the reaction of chlorine with natural organic matter was discovered. Since then there have been various studies on alternative disinfectants that could inactivate microorganisms and at the same time form less or no disinfection by-products. More recently the ultraviolet (UV) irradiation has been used to both disinfect and remove organic contaminants in drinking water. Though the use of UV irradiation has been found to be very effective in the inactivation of microorganisms, it does not provide a residual effect to maintain the water?s microbial quality in the distribution system. Due to this, a secondary disinfectant such as chlorine has to be used to achieve microbial stability, suggesting that the formation of chlorination disinfection by-products would still occur but perhaps in different quantities and with different chemical species. In this research, the use of factorial experiments and single factor experiments were used to determine the effects of pH, alkalinity and UV-fluence (dose) on the formation of three classes of disinfection by-products; haloacetic acids (HAAs), haloacetonitriles (HANs) and trihalomethanes (THMs). These disinfection by-products were measured in water samples following post-UV chlorination and the UV treatment was either UV photolysis or UV/H2O2. From the factorial experiment results, treatment of synthetic water with UV/H2O2, an advanced oxidation process (AOP), produced fewer post-UV chlorination disinfection by-products (PCDBPs) than UV photolysis. For chlorinated PCDBPs, the percentage difference between UV photolysis and UV/H2O2 was 55, 65 and 38% for total HAAs (HAA9), total HANs (THANs) and total THMs (TTHMs) respectively. The percentage difference between UV photolysis and UV/H2O2 for brominated PCDBPs was 41 and 42% for HAA9 and TTHMs respectively. Both the use of pH and alkalinity proved to be factors that were significant in affecting the yields of the PCDBPs studied. Increases in alkalinity were found to increase the formation of PCDBPs in the treatment of synthetic water with UV/H2O2. Alkalinity had the opposite effect for PCDBP formed under UV photolysis conditions. Increases in pH always decreased the formation of PCDBPs. In the single factor experiments, haloacetic acid concentrations were unaffected as alkalinity was increased but dichloroacetonitrile and chloroform increased in concentration under treatment conditions of UV photolysis followed by chlorination. The UV/H2O2 treatment resulted in a decrease in concentration of the PCDBPs. In the pH studies, water samples were subjected only to the UV/H2O2 treatments and a reduction in concentration of PCDBPs occurred between pH 7 and 9.
【 预 览 】
附件列表
Files Size Format View
Disinfection By-Product Formation in Drinking Water Treated with Chlorine Following UV Photolysis & UV/H2O2 814KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:34次