This paper presents a summary of our current efforts to characterize the real-time corrosion rates of materials during 800 MeV proton radiation at currents up to 0.4 mA. Specially designed corrosion probes, which incorporated ceramic seals, were mounted in flow tubes on a water manifold that allowed samples to be directly exposed to the proton beam at the Los Alamos Neutron Science Center. The water system that supplied the manifold provided a means for controlling water chemistry, measuring dissolved hydrogen concentration, and measuring the effects of water radiolysis and water quality on corrosion rate. Real-time corrosion rate measurements during proton irradiation showed an exponential increase in corrosion rate with proton beam current. In addition, for any given material type, a trend in corrosion rate with probe location relative to the beam centerline was observed. These results are discussed within the context of particle type, particle flux, and energy deposition.