期刊论文详细信息
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS 卷:332
Simultaneous quantification of light elements in thin films deposited on Si substrates using proton EBS (Elastic Backscattering Spectroscopy)
Article; Proceedings Paper
Ferrer, F. J.1  Alcaire, M.2  Caballero-Hernandez, J.2  Garcia-Garcia, F. J.2  Gil-Rostra, J.2  Terriza, A.2  Godinho, V.2  Garcia-Lopez, J.1,3  Barranco, A.2  Fernandez-Camacho, A.2 
[1] Univ Seville, CSIC, Ctr Nacl Aceleradores, E-41092 Seville, Spain
[2] Univ Seville, CSIC, Inst Ciencia Mat, E-41092 Seville, Spain
[3] Univ Seville, Dept Fis Atom Mol & Nucl, E-41080 Seville, Spain
关键词: Elastic Backscattering Spectroscopy;    Proton beams;    Helium content;    Carbon content;    Nitrogen content;    Oxygen content;    Fluorine content;   
DOI  :  10.1016/j.nimb.2014.02.124
来源: Elsevier
PDF
【 摘 要 】

Quantification of light elements content in thin films is an important and difficult issue in many technological fields such as polymeric functional thin films, organic thin film devices, biomaterials, and doped semiconducting structures. Light elements are difficult to detect with techniques based on X-ray emission, such as energy dispersive analysis of X-rays (EDAX). Other techniques, like X-ray photoelectron spectroscopy (XPS), can easily quantify the content of light elements within a surface but often these surface measurements are not representative of the lights elements global composition of the thin film. Standard Rutherford backscattering spectroscopy (RBS), using alpha particles as probe projectiles, is not a good option to measure light elements deposited on heavier substrates composed of heavier elements like Si or glass. Nuclear Reaction Analysis (NRA) offers a good quantification method, but most of the nuclear reactions used are selective for the quantification of only one element, so several reactions and analysis are necessary to measure different elements. In this study, Elastic Backscattering Spectroscopy (EBS) using proton beams of 2.0 MeV simultaneously quantified different light elements (helium, carbon, nitrogen, oxygen, and fluorine) contained in thin films supported on silicon substrates. The capabilities of the proposed quantification method are illustrated with examples of the analysis for a series of thin film samples: amorphous silicon with helium bubbles, fluorinated silica, fluorinated diamond-like carbon and organic thin films. It is shown that this simple and versatile procedure allows the simultaneous quantification of light elements in thin films with thicknesses in the 200-500 nm range and contents lower than 10 at.%. (C) 2014 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_nimb_2014_02_124.pdf 454KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:2次