Self-assembly of nanoparticle building blocks including nanospheres, nanorods, nanocubes, nano plates, nanoprisms, etc., may provide a promising means for manipulating these building blocks into functional and useful materials. One increasingly popular method for self-assembly involves functionalizing nanoparticles and nanostructured molecules with tethers of organic polymers or biomolecules with specific or nonspecific interactions to facilitate their assembly. However, there is little theory and little understanding of the general principles underlying self-assembly in these complex materials. Using computer simulation to elucidate the principles of self-assembly and develop a predictive theoretical framework was the central goal of this project.