A reference equilibrium for the U.S. National Compact Stellarator Experiment is predicted to be sufficiently close to quasi-symmetry to allow the plasma to flow in the toroidal direction with little viscous damping, yet to have sufficiently large deviations from quasi-symmetry that nonambipolarity significantly affects the physics of the shielding of resonant magnetic perturbations by plasma flow. The unperturbed velocity profile is modified by the presence of an ambipolar potential, which broadens the profile and improves the shielding near the plasma edge. In the presence of a resonant magnetic field perturbation, nonambipolar transport produces a radial current, and the resulting jxB force resists departures from the ambipolar velocity and enhances the shielding.