The central tenet of this proposal is that a fundamental understanding of specific mineral surface-site reactivities will substantially improve reactive transport models of contaminants in geologic systems, and will allow more effective remediation schemes to be devised. Most large-scale, macroscopic models employ global chemical reaction kinetics and thermochemistry. However, such models do not incorporate molecular-level input critical to the detailed prediction of how contaminants interact with minerals in the subsurface. A first step leading to the incorporation of molecular-level processes in large-scale macroscopic models is the ability to understand which molecular-level processes will dominate the chemistry at the microscopic grain level of minerals. To this end, the research focuses on the fundamental mechanisms of redox chemistry at mineral surfaces. As much of this chemistry in sediments involves the Fe(III)/Fe(II) and Mn(IV)/Mn(II) couples, the authors focus on mineral phases containing these species.