This paper discusses the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology. We show how, after a simple change of variables, one can quantize the problem in a way which parallels the classical discussion. The result is that two of the Einstein equations arise as exact equations of motion; one of the usual Einstein equations (suitably quantized) survives as a constraint equation to be imposed on the space of physical states. However, the Friedmann equation, which is also a constraint equation and which is the basis of the Wheeler-DeWitt equation, acquires a welcome quantum correction that becomes significant for small scale factors. We then discuss the extension of this result to a full quantum mechanical derivation of the anisotropy ((delta)(rho)/(rho)) in the cosmic microwave background radiation and the possibility that the extra term in the Friedmann equation could have observable consequences. Finally, we suggest interesting ways in which these techniques can be generalized to cast light on the question of chaotic or eternal inflation. In particular, we suggest that one can put an experimental bound on how far away a universe with a scale factor very different from our own must be, by looking at its effects on our CMB radiation.