Comparison of Field-Scale Effective Properties of Two-Phase Flow in Heterogeneous Porous Media Obtained by Stochastic Analysis and Numerical Experiments.
The effects of subsurface heterogeneity on two-phase flow can be observed from the characterization functions of field-scale effective relative permeability and capillary pressure with respect to mean saturation. Numerical experiments were used to evaluate such effective properties of two-phase flow in a heterogeneous medium with properties representing the Borden Aquifer, and compared with the results of stochastic analysis developed using a spectral perturbation technique that employs a stationary, stochastic representation of the spatial variability of soil properties. Arbitrary forms of the relative permeability and capillary pressure characteristic functions with respect to saturation can be used in the theoretical analysis and numerical code. A statistical scaling procedure, which is a generalization of Leverett scaling, was developed for the relationship between intrinsic permeability and two capillary parameters.