学位论文详细信息
Natural hydrate-bearing sediments: Physical properties and characterization techniques
Methane hydrate;Hydrate-bearing sediments;Nucleation;Hydrate morphology;Water retention curve;Network model simulation;Clay;Frozen sand;Creep;Coda wave interferometry;Sampling disturbance;Pressure core technology;P-wave;Hydraulic conductivity;Pore water sampling
Dai, Sheng ; Santamarina, Carlos Civil and Environmental Engineering Frost, J. David Waite, William Burns, Susan E. Huber, Christian ; Santamarina, Carlos
University:Georgia Institute of Technology
Department:Civil and Environmental Engineering
关键词: Methane hydrate;    Hydrate-bearing sediments;    Nucleation;    Hydrate morphology;    Water retention curve;    Network model simulation;    Clay;    Frozen sand;    Creep;    Coda wave interferometry;    Sampling disturbance;    Pressure core technology;    P-wave;    Hydraulic conductivity;    Pore water sampling;   
Others  :  https://smartech.gatech.edu/bitstream/1853/52186/1/DAI-DISSERTATION-2013.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

An extensive amount of natural gas trapped in the subsurface is found as methane hydrate. A fundamental understanding of natural hydrate-bearing sediments is required to engineer production strategies and to assess the risks hydrates pose to global climate change and large-scale seafloor destabilization. This thesis reports fundamental studies on hydrate nucleation, morphology and the evolution of unsaturation during dissociation, followed by additional studies on sampling and pressure core testing.Hydrate nucleation is favored on mineral surfaces and it is often triggered by mechanical vibration. Continued hydrate crystal growth within sediments is governed by capillary and skeletal forces; hence, the characteristic particle size d10 and the sediment burial depth determine hydrate morphologies in natural sediments. In aged hydrate-bearing sand, Ostwald ripening leads to patchy hydrate formation; the stiffness approaches to the lower bound at low hydrate saturation and the upper bound at high hydrate saturation. Hydrate saturation and pore habit alter the pore size variability and interconnectivity, and change the water retention curve in hydrate-bearing sediments.The physical properties of hydrate-bearing sediments are determined by the state of stress, porosity, and hydrate saturation. Furthermore, hydrate stability requires sampling, handling, and testing under in situ pressure, temperature, and stress conditions. Therefore, the laboratory characterization of natural hydrate-bearing sediments faces inherent sampling disturbances caused by changes in stress and strain as well as transient pressure and temperature changes that affect hydrate stability. While pressure core technology offers unprecedented opportunities for the study of hydrate-bearing sediments, careful data interpretation must recognize its inherent limitations.

【 预 览 】
附件列表
Files Size Format View
Natural hydrate-bearing sediments: Physical properties and characterization techniques 11423KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:8次