科技报告详细信息
Evolving forest fire burn severity classification algorithms for multi-spectral imagery.
Brumby, S.
Technical Information Center Oak Ridge Tennessee
关键词: Remote sensing;    Forests;    Fires;    Algorithms;    Classification;   
RP-ID  :  DE2001776131
学科分类:工程和技术(综合)
美国|英语
来源: National Technical Reports Library
PDF
【 摘 要 】

Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.

【 预 览 】
附件列表
Files Size Format View
DE2001776131.pdf 2326KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:0次