Computer-aided modeling has been very successful in the design of chelating ligands for the formation of selective metal complexes. We report herein preliminary efforts to extend the principles developed for ion-specific chelating ligands to the weaker, more diffuse electrostatic interactions between complex anions and dicationic sites of anion-exchange resins. Calculated electrostatic affinity between plutonium (IV) hexanitrato dianions and analogue of dicationic anion-exchange sites correlate well with empirically-determined distribution coefficients. This Quantitative Structure Activity Relationship (QSAR) is useful in the determination of the overall trend within a select series of bifunctional resins and which structural modifications are most likely to be advantageous. Ultimately, we hope to refine this methodology to allow the a priori determination of ion-exchange behavior for abroad class of materials.