Temperature-swing adsorption pumps have been proposed as a method of acquiring and compressing Martian atmospheric CO2 for downstream processing. Most industrial applications and previous research targeted at space in-situ resource utilization (ISRU) utilize long (~hours) temperature swing periods, typically limited by the ability to transfer heat from a naturally insulating sorbent bed. A rapid cycle adsorption pump (RCAP) would reduce these periods to minutes, in the hope of increasing overall throughput. This paper details the design and preliminary experimental results from testing an RCAP in a simulated Martian environment. The test configuration features a central, liquid-cooled and heated heat transfer plate surrounded by symmetrical rectangular sorbent beds. Various bed thicknesses and commercially available Zeolite 13X sorbent particle sizes are evaluated to both determine performance and provide data for a parallel modeling effort. Discussions of multi-stage configurations and methods of boosting bed conductivity are included.