Microwave remote sensing measurements at L-band (~1.2-1.6 GHz) of geophysical parameters such as soil moisture will need to be at higher spatial resolution than current systems (SMOS/ SMAP/ Aquarius) in order to meet the requirements of land surface, ocean, and numerical weather prediction models in the near future, which will operate at ~9-15 km global grids and 1-3 km regional grids in the next few years. In order to make progress toward these needed spatial resolutions, advancements in technology are necessary which would lead to improved effective (i.e. equivalent) antenna size. An architecture trade study was conducted to quantitatively define the value and limits of different microwave technology paths, and to select the most appropriate path to achieve the high spatial resolution required by science in the future without sacrificing performance, accuracy, and global coverage.