科技报告详细信息
Simulating the Clamped Tapered Beam Specimen Under Quasi-Static and Fatigue Loading Using Floating Node Method
Seshadri, B R ; de Carvalho, N V ; Ratcliffe, J G ; Mabson, Gerald E ; Deobald, Lyle
关键词: CHARACTERIZATION;    CLAMPED STRUCTURES;    COMPUTERIZED SIMULATION;    CRACK PROPAGATION;    DELAMINATING;    MIGRATION;    STATIC LOADS;    THERMAL STRESSES;    BOUNDARY CONDITIONS;    COMPOSITE STRUCTURES;    CRACK INITIATION;    DAMAGE ASSESSMENT;    FATIGUE (MATERIALS);    LOADS (FORCES);    PREDICTION ANALYSIS TECHNIQUES;   
RP-ID  :  NF1676L-27492
学科分类:力学,机械学
美国|英语
来源: NASA Technical Reports Server
PDF
【 摘 要 】

As part of the NASA Advanced Composites Project (ACP), a sub-element has been designed to provide validation data for progressive damage analysis models. The clamped tapered beam is a cross-ply laminated composite specimen designed to validate the simulation of the onset of matrix cracks and their interaction with delaminations, including delamination migration. A tapered geometry was used to localize the first damage occurrence in the tapered region, without prescribing an initial crack. The boundary and loading conditions were chosen to favor delamination growth and subsequent migration after the first damage occurrence. The typical sequence of events consists of a matrix crack located at the tapered region, leading to delamination onset, followed by delamination growth and subsequent delamination migration to a different interface via a dominant matrix crack. The Clamped Tapered Beam (CTB) was tested in both quasi-static and fatigue regimes. The results obtained are used in this study to assess and validate a methodology based on the Floating Node Method (FNM) implemented as an Extended Interface Element. In this methodology, quasi-static and fatigue damage formation and development are modeled by combining FNM to represent crack networks, with Directional Cohesive Zone Elements (DCZE) and Virtual Crack Closure Technique (VCCT), respectively. Qualitatively, the methodology is capable of predicting the sequence of events and overall failure morphology. Quantitatively, the simulation results generally bound the experimental data, based on the range of the characterization data used. In this paper, the results from quasi static and fatigue simulations are compared and correlated with experimental data.

【 预 览 】
附件列表
Files Size Format View
20180006193.pdf 439KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:12次