科技报告详细信息
Variational Symplectic Integrator for Long-Time Simulations of the Guiding-Center Motion of Charged Particles in General Magnetic Fields
Qin, H. ; Guan, X.
Princeton University. Plasma Physics Laboratory.
关键词: Differential Equations;    Numerical Simulation;    Charged Particles;    Magnetic Fields;    Simulation Gyrokinetic Equations;   
DOI  :  10.2172/960290
RP-ID  :  PPPL-4286
RP-ID  :  DE-ACO2-76CHO3073
RP-ID  :  960290
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods.

【 预 览 】
附件列表
Files Size Format View
960290.pdf 617KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:31次