期刊论文详细信息
American journal of engineering and applied sciences
A Cartesian Regulator for an Ideal Position-Servo Actuated Didactic Mechatronic Device: Asymptotic Stability Analysis
article
Gabriela Zepeda1  Rafael Kelly1  Carmen Monroy2 
[1] Department of Applied Physics, Ensenada Center for Scientific Research and Higher Education;ISEP–Sistema Educativo Estatal
关键词: Actuators;    Position Servo;    Pendulum;    Control;    Stability;    Domain of Attraction;    Nonlinear Systems;    Differential Equations;    Robotics;   
DOI  :  10.3844/ajeassp.2022.189.196
学科分类:工程和技术(综合)
来源: Science Publications
PDF
【 摘 要 】

Position-servoactuators are by themselves feedback mechatronics systems modeled by OrdinaryDifferential Equations (ODE). From a technological point of view,position-servos are based upon an electrical motor, a shaft angular positionsensor, and a dominant Proportional controller. These position servo actuatorsare at the core of several real-life practical and didactic mechatronics androbotics systems. The contribution of this study is the introduction of a novelposition regulator in Cartesian space and the stability analysis of areal-world mechatronic system involving the following mechatronics ingredients:A position servo actuated pendulum endowedwith position sensing for feedback and a novel nonlinear integral controllerfor direct position regulation in Cartesian space avoiding the inversekinematics computational burden. Because of the nonlinear nature of the controlsystem, the standard analysis tools from classic linear control cannot beutilized, thus this study invokes Lyapunov stability arguments to proveasymptotic stability and to provide an estimate of the domain of attraction.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307060002285ZK.pdf 730KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:13次