Second Generation Advanced Reburning for High Efficiency NOx Control | |
Zamansky, Vladimir M. ; Maly, Peter M. ; Lissianski, Vitali V. ; Sheldon, Mark S. ; Moyeda, David ; Payne, Roy | |
Energy & Env Research Corp | |
关键词: Efficiency; Boilers; Economics; 01 Coal, Lignite, And Peat; Promoters; | |
DOI : 10.2172/910272 RP-ID : None RP-ID : AC22-95PC95251 RP-ID : 910272 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the viability of the AR technology. The performance goals of the project to reduce NO{sub x} by up to 95% with net emissions less than 0.06 lb/10{sup 6} Btu and to minimize other pollutants (N{sub 2}O and NH{sub 3}) to levels lower than reburning and SNCR have been met. Experimental data demonstrated that AR-Lean + SNCR and Reburning + SNCR are the most effective AR configurations, followed by AR-Lean and AR-Rich. Promoters can increase AR NO{sub x} reduction efficiency. Promoters are the most effective at small amounts of the reburning fuel (6-10% of the total fuel heat input). Promoters provide the means to improve NO{sub x} reduction and simultaneously decrease the amount of reburning fuel. Tests also showed that alkali-containing compounds are effective promoters of the AR process. When co-injected with N-agent, they provide up to 25 % improvement in NO{sub x} reduction. A detailed reaction mechanism and simplified representation of mixing were used in modeling of AR processes. Modeling results demonstrated that the model correctly described a wide range of experimental data. Mixing and thermal parameters in the model can be adjusted depending on characteristics of the combustion facility. Application of the model to the optimization of AR-Lean has been demonstrated. Economic analysis demonstrated a considerable economic advantage of AR technologies in comparison with existing commercial NO{sub x} control techniques, such as basic reburning, SNCR, and SCR. Particularly for deep NO{sub x} control, coal-based AR technologies are 50% less expansive than SCR for the same level of NO{sub x} control. The market for AR technologies is estimated to be above $110 million.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
910272.pdf | 3714KB | download |