DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing | |
Bannochie, C | |
Savannah River Site (S.C.) | |
关键词: Hydrogen Production; Radiolysis; Radioactive Waste Facilities; Sludges; Radioactive Waste Processing; | |
DOI : 10.2172/890196 RP-ID : WSRC-TR-2005-00286 RP-ID : DE-AC09-96SR18500 RP-ID : 890196 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
The Defense Waste Processing Facility, DWPF, has requested that the Savannah River National Laboratory, SRNL, investigate the factors that contribute to hydrogen generation to determine if current conservatism in setting the DWPF processing window can be reduced. A phased program has been undertaken to increase understanding of the factors that influence hydrogen generation in the DWPF Chemical Process Cell, CPC. The hydrogen generation in the CPC is primarily due to noble metal catalyzed decomposition of formic acid with a minor contribution from radiolytic processes. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Two sludge simulants were obtained, one with co-precipitated noble metals and one without noble metals. Co-precipitated noble metals were expected to better match real waste behavior than using trimmed noble metals during CPC simulations. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The two original and two heat-treated sludge simulants were then used as feeds to Sludge Receipt and Adjustment Tank, SRAT, process simulations. Testing was done at relatively high acid stoichiometries, {approx}175%, and without mercury in order to ensure significant hydrogen generation. Hydrogen generation rates were monitored during processing to assess the impact of the form of noble metals. The following observations were made on the data: (1) Co-precipitated noble metal simulant processed similarly to trimmed noble metal simulant in most respects, such as nitrite to nitrate conversion, formate destruction, and pH, but differently with respect to hydrogen generation: (A) The peak hydrogen generation rate occurred three to five hours later for the regular and heat-treated co-precipitated noble metal slurries than for the slurries with trimmed noble metals. (B) The peak hydrogen generation rate was lower during processing of the co-precipitated noble metal simulant relative to the trimmed noble metal simulant data. (C) Trimmed noble metals appeared to be conservative relative to co-precipitated noble metals under the conditions of these tests as long as the peak hydrogen generation rate occurred early in the SRAT boiling period. (2) If the peak hydrogen generation rate with trimmed noble metals is near or above the DWPF limit, and if the peak occurs late in the SRAT cycle, then a potential SME cycle hydrogen generation rate issue could be anticipated when using co-precipitated noble metals, since the peak is expected to be delayed relative to trimmed noble metals. (3) The peak hydrogen generation rate increased from about 1.3 to about 3.7 lbs H{sub 2}/hr on the range of 170-190% stoichiometry, or about 0.1 lbs. H{sub 2}/hr per % change in the stoichiometric factor at DWPF scale. (4) The peak generation rate was slightly higher during processing of the heat-treated coprecipitated noble metal simulant relative to the trimmed noble metal heat-treated simulant, but this probably due to somewhat more excess acid being added to the co-precipitated noble metal test than intended. (5) The variations in the peak hydrogen generation rate appeared to track the quantity of dissolved rhodium in the SRAT product. (6) A noble metal apparently activated and then de-activated during the final hour of formic acid addition. The associated peak generation rate was <3% of the maximum rate seen in each test. Palladium may have been responsible based on literature data. (7) Planned comparisons between heat-treated and un-heat-treated simulants were complicated by the significantly altered base equivalents following heat-treatment. This necessitated making small adjustments to the stoichiometric acid factor to attempt to match the excess acid contents of the various cases. The overall conclusion for the work completed to date is that co-precipitated noble metals were more difficult to activate, and were probably less active then trimmed noble metals under the conditions tested. The use of heat-treatment to simulate aging did not change the ease of activation of the noble metals. The relative ranking of the heat-treated trimmed and co-precipitated noble metal simulants was ambiguous with respect to peak hydrogen generation rate.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
890196.pdf | 568KB | download |