FIBER OPTICAL MICRO-DETECTORS FOR OXYGEN SENSING IN POWER PLANTS | |
Baker, Gregory L. ; Ghosh, Ruby N. ; III, D.J. Osborn ; Zhang, Po | |
Michigan State University | |
关键词: Luminescence; Oxygen; Fibers; Molybdenum; Potassium; | |
DOI : 10.2172/842719 RP-ID : NONE RP-ID : FC26-02NT41582 RP-ID : 842719 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
A reflection mode fiber optic oxygen sensor is being developed that can operate at high temperatures for power plant applications. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Two critical materials issues are the cluster's ability to withstand high temperatures when immobilized in a porous the sol-gel support, and whether after heating to high temperatures, the sol-gel matrix maintains a high and constant permeability to oxygen to support rapid quenching of luminescence. We used a composite materials approach to prepare stable sensing layers on optical fibers. We dispersed 60 w/w% of a pre-cured sol-gel composite containing the potassium salt of molybdenum clusters (K{sub 2}Mo{sub 6}Cl{sub 14}) into a sol-gel binder solution, and established the conditions necessary for deposition of sol-gel films on optical fibers and planar substrates. The fiber sensor has an output signal of 5 nW when pumped with an inexpensive commercial 365 nm ultraviolet light emitting diode (LED). Quenching of the sensor signal by oxygen was observed up to a gas temperature of 175 C with no degradation of the oxygen permeability of the composite after high temperature cycling. On planar substrates the cluster containing composite responds within <1 second to a gas exchange from nitrogen to oxygen, indicating the feasibility of real-time oxygen detection.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
842719.pdf | 537KB | download |