Reconnaissance Estimates of Recharge Based on an Elevation-dependent Chloride Mass-balance Approach | |
Russell, Charles E. ; Minor, Tim | |
Desert Research Institute, University and Community College System of Nevada (United States) | |
关键词: Mass Balance; Sediments; Flow Rate; Chlorides; Bromides; | |
DOI : 10.2172/808504 RP-ID : DOE/NV/11508-37 RP-ID : AC08-95NV11508 RP-ID : 808504 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
Significant uncertainty is associated with efforts to quantity recharge in arid regions such as southern Nevada. However, accurate estimates of groundwater recharge are necessary to understanding the long-term sustainability of groundwater resources and predictions of groundwater flow rates and directions. Currently, the most widely accepted method for estimating recharge in southern Nevada is the Maxey and Eakin method. This method has been applied to most basins within Nevada and has been independently verified as a reconnaissance-level estimate of recharge through several studies. Recharge estimates derived from the Maxey and Eakin and other recharge methodologies ultimately based upon measures or estimates of groundwater discharge (outflow methods) should be augmented by a tracer-based aquifer-response method. The objective of this study was to improve an existing aquifer-response method that was based on the chloride mass-balance approach. Improvements were designed to incorporate spatial variability within recharge areas (rather than recharge as a lumped parameter), develop a more defendable lower limit of recharge, and differentiate local recharge from recharge emanating as interbasin flux. Seventeen springs, located in the Sheep Range, Spring Mountains, and on the Nevada Test Site were sampled during the course of this study and their discharge was measured. The chloride and bromide concentrations of the springs were determined. Discharge and chloride concentrations from these springs were compared to estimates provided by previously published reports. A literature search yielded previously published estimates of chloride flux to the land surface. {sup 36}Cl/Cl ratios and discharge rates of the three largest springs in the Amargosa Springs discharge area were compiled from various sources. This information was utilized to determine an effective chloride concentration for recharging precipitation and its associated uncertainty via Monte Carlo simulations. Previously developed isohyetal maps were utilized to determine the mean and standard deviation of precipitation within the area. A digital elevation model was obtained to provide elevation information. A geologic model was obtained to provide the spatial distribution of alluvial formations. Both were used to define the lower limit of recharge. In addition, 40 boreholes located in alluvial sediments were drilled and sampled in an attempt to support the argument that the areal distribution of alluvial sediments can be used to define a zone of negligible recharge. The data were compiled in a geographic information system and used in a Monte Carlo analysis to determine recharge occurring within the study area. Results of the analysis yielded estimates of the mean and standard deviation of recharge occurring within the study area (28.168 x 10{sup 6} m{sup 3} yr{sup -1} and 7.008 x 10{sup 6} m{sup 3} yr{sup -1}, and 26.838 x 10{sup 6} m{sup 3} yr{sup -1} and 6.928 x 10{sup 6} m{sup 3} yr{sup -1}) for two sets of simulations using alternate definitions of the lower limit of recharge. A sensitivity analysis determined the recharge estimates were most sensitive to uncertainty associated with the chloride concentration of the spring discharge. The second most sensitive parameter was the uncertainty associated with the mean precipitation within the recharge areas. Comparison of the analysis to previously published estimates of recharge revealed mixed results with the recharge estimates derived during the course of this project generally greater relative to previously published estimates.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
808504.pdf | 2319KB | download |