OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K. | |
GREENE,G.A. ; FINFROCK,C.C. | |
Brookhaven National Laboratory | |
关键词: Aerosols; Source Terms; Evaporation; 36 Materials Science; Inconel 718; | |
DOI : 10.2172/777719 RP-ID : BNL--52620 RP-ID : AC02-98CH10886 RP-ID : 777719 |
|
美国|英语 | |
来源: UNT Digital Library | |
【 摘 要 】
As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirable and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic regime. At temperatures below 1173 K, the rate of oxidation of the Inconel 718 surface was found to decrease markedly with time; the parabolic oxidation rate coefficient was not a constant but decreased with time. This was taken to indicate that the oxide film on the surface was having a passivating effect on oxygen transport through the oxide to the underlying metal. For temperatures in the range 1173 K to 1573 K, the time-dependent rate of oxidation as determined once again by weight-gain measurements was found to display the classical parabolic rate behavior, indicating that the rate of transport of reactants through the oxide was controlled by diffusion through the growing oxide layer. Parabolic rate coefficients were determined by least-squares analysis of time-dependent mass-gain data at 1173 K, 1273 K, 1373 K, 1473 K and 1573 K. At temperatures above 1540 K, post test examination of the oxidized samples revealed that the Inconel 718 began to lose strength and to deform. At 1540 K, samples which were suspended from their ends during testing began to demonstrate axial curvature as they lost strength and bowed under their own weight. As the temperatures of the tests were increased, rivulets were seen to appear on the surfaces of the test specimens; damage became severe at 1560 K. Although melting was never observed in any of these tests even up to. 1620 K, it was concluded from these data that the Inconel 718 clad should not be expected to protect the underlying tungsten at temperatures above 1540 K.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
777719.pdf | 1805KB | download |