科技报告详细信息
Upscaling Radionuclide Retardation?Linking the Surface Complexation and Ion Exchange Mechanistic Approach to a Linear Kd Approach
Zavarin, M ; Carle, S ; Maxwell, R
Lawrence Livermore National Laboratory
关键词: Lawrence Livermore National Laboratory;    Isotherms;    Source Terms;    38 Radiation Chemistry, Radiochemistry, And Nuclear Chemistry;    58 Geosciences;   
DOI  :  10.2172/15014299
RP-ID  :  UCRL-TR-204713
RP-ID  :  W-7405-ENG-48
RP-ID  :  15014299
美国|英语
来源: UNT Digital Library
PDF
【 摘 要 】

The LLNL near-field hydrologic source term (HST) model is based on a mechanistic approach to radionuclide retardation-that is, a thermodynamic description of chemical processes governing retardation in the near field, such as aqueous speciation, surface complexation, ion exchange, and precipitation The mechanistic approach allows for radionuclide retardation to vary both in space and time as a function of the complex reaction chemistry of the medium. This level of complexity is necessary for near-field HST transport modeling because of the non-linear reaction chemistry expected close to the radiologic source. Large-scale Corrective Action Unit (CAU) models-into which the near-field HST model results feed-require that the complexity of the mechanistic approach be reduced to a more manageable form (e.g. Linear, Langmuir, or Freundlich sorption isotherms, etc). The linear sorption isotherm (or K{sub d}) approach is likely the most simple approach for large-scale CAU models. It may also be the most appropriate since the reaction chemistry away from the near field is expected to be less complex and relatively steady state. However, if the radionuclide retardation approaches in near-field HST and large-scale CAU models are different, they must be proved consistent. In this report, we develop a method to link the near-field HST and large-scale CAU model radionuclide retardation approaches.

【 预 览 】
附件列表
Files Size Format View
15014299.pdf 3466KB PDF download
  文献评价指标  
  下载次数:24次 浏览次数:16次