科技报告详细信息
SPARSE REPRESENTATIONS WITH DATA FIDELITY TERM VIA AN ITERATIVELY REWEIGHTED LEAST SQUARES ALGORITHM
WOHLBERG, BRENDT1  RODRIGUEZ, PAUL1 
[1] Los Alamos National Laboratory
关键词: 99;    ALGORITHMS;    LEAST SQUARE FIT;    ITERATIVE METHODS;   
DOI  :  10.2172/1000493
RP-ID  :  LA-UR-07-0078
PID  :  OSTI ID: 1000493
Others  :  TRN: US201101%%596
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】

Basis Pursuit and Basis Pursuit Denoising, well established techniques for computing sparse representations, minimize an {ell}{sup 2} data fidelity term subject to an {ell}{sup 1} sparsity constraint or regularization term on the solution by mapping the problem to a linear or quadratic program. Basis Pursuit Denoising with an {ell}{sup 1} data fidelity term has recently been proposed, also implemented via a mapping to a linear program. They introduce an alternative approach via an iteratively Reweighted Least Squares algorithm, providing greater flexibility in the choice of data fidelity term norm, and computational advantages in certain circumstances.

【 预 览 】
附件列表
Files Size Format View
RO201705190002992LZ 404KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:33次