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Sparse Representations with ¢! Data Fidelity Term

via an Iteratively Reweighted Least Squares
Algorithm

Paul Rodriguez and Brendt Wohlberg

Abstract— Basis Pursuil and Basis Porsuit Denoising, well
established technigues for computing sparse representations,
minimize an ¢ dala fidelity term subject to an i sparsity
constraint or regularization term on the solution by mapping the
problem to a linear or quadratic program. Basis Pursnit Denois-
ing with an /' data fidelity term has recently been proposed, also
implemented via a mapping to a linear program. We introduce an
alternative approach via an iteratively Reweighted Least Squares
algorithm, providing pgreater flexibility in the choice of dala
fidelity term norm, and computational advantages in certain
circumstances.

[. INTRODUCTION

Recently, several authors have considered sparse approxi-
mation and image resioration problems with respect to error
measures other than the usual £ norm (Euclidean distance),
Specifically, problems which include a ¢' data fidelity term
have attracted great attention.

In the case of sparse approximations, the Basis Pursuoit (BF)
and Basis Pursuit denoising (BPDN) paradigm, introduced in
[1], consist in the following mimmization problems:

BP min |[u||, subject wdu="h
1, : .
BPDN  min 7 |&u - b2 + A [lul

where € 15 a » = p matrix form using the basis vectlors
from an (in general) overcomplete dictionary ie. p & n
and it is assumed that rank(®) = n. The BP and BPDN
problems are solved using linear or quadratic programming
via interior point methods (see [1]) or by iteratively solving
a weighted £* version of the original problem (see (2], [31).
The Affine Scaling Transformation (AST) algorithm ([4], [51)
was proposed o minimize a modified BP and BPDN cost
functional; these functionals use the £F norm to measure
the sparsity of the representation sought in the overcomplete
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dictionary &
AST-BP min [u/|7 subject (o $u = b
ASEBPDN  min & [[®u — b] 2 + 2 [Jul?
2 p

and it can be summanzed as:
y o 2 gy !
) = W (oW 0T 4 A1) b ()
k) -1 1-EY g . o
where W = diag |u“ | . Note that setting p = 1
and A = [ will solve the BP problem, whereas if A = 0 will

solve the BPDN problem. More recently, [6] studies the BPDIN
problem with an ¢! data fidelity term

BPDN £' — Fidelity min [ Pu—b|, + A v,

and shows the equivalence of the abeve minimization problem
with Linear Programming; as an application, denoising in the
presence of impulse noise is considered for {only) 1D signals.

In the case of image restoration, [7] considers the mini-
mization of a cost functional with an #' norm for both the
fidelity and regulanzation terms. More specifically, for Total
Variation {TV), the inclusion of the #! data fidelity termn [8],
[9] bas a number of advantages, including superior denoising
performance with salt and pepper (speckle) noise [10]; there
are a fair amount of algonthms [11], [9], [10], [12], [13], [14]
to tackle this problem.

In this paper we propose a simple yet fexible and com-
putationally efficient algorithm to solve the generalized BP
prublem

Ceneralized BPDN

1 A
min - ||[$u — hg;: e Ei'ltliﬁ
¥ p

thiz algorithm, called Ieratively Reweighted Norm for BPDN
ior [IRM-BPDN), which is an extension o the AST algorithm
{41, [5], is closely related (o the Tteratively Reweighted Norm
for Total Variation (or IRN-TV, see [11]).

II. IRN-BPDN ALGORITHM
A, Fidelity term

2
Wi = diag (—_ﬁ. (P — b]) ,
q
where fr is defined (for some small £g) as

o~

fw{w}=-{ e 5

if |z| = ep
if |x| < ep,
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where [ in defined (for some smuall € 5) as
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€. Derivation

g A -
= | B — k| :: - ||u :
I: ii
i 2 5 . {
= | W ' -~ Wbl 4 We'ul,
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| " . A
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Replace Tor & and u

1. RESvLTS

Ciranan and Vandergheynst [6] have previously discussed
the advantages of BPDN wath an ' data fidelity term. Here
were privide additional evidence hased on examples computied
using the proposed algorithm
image 15 disploved 1o Fguree 1Loand the some image after
addinon of 5% speckle nonse is displayed in Figure 2, This
simple cxample is intended 1o illustrste the advantoges of
BPON when an appropeiste dictionary 15 available, in this

A simple cubie phase cosine

Fig: 2. Cubic image with % speckle noise. SNK: 99148

case the DCT. Figures Ma), 3th), and ¥c) display denoising
resuits for stapdard (= BPDN, 5TV, und ¢* BPDN via the
proposed algorithm, Note that even though the ¢'-TV result
has o slightly higher SNR than BPDN with ¢ datu fidelity
term, the former has a superior visual guality

IV, CoNcLusIioxs

The proposed alzonthm provides a flexible and compa-
tainonally efficsent means of solving the gencralized BPDN
problem, including the ¢ BPDN problem

MNOTE

This is an early draft version of this paper, submitted for an
LA-UR number &l this stage due to an approaching submission
deadling
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