科技报告详细信息
JV Task 77 - Health Implications of Mercury - Selenium Interactions
Nicholas Ralstion ; Laura Raymond
关键词: AFFINITY;    ANTIOXIDANTS;    BLOOD;    BRAIN;    GLANDS;    MERCURY;    METHYLMERCURY;    NUTRIENTS;    PHYSIOLOGY;    PROTEINS;    REFLECTION;    RISK ASSESSMENT;    SELENIUM;    TOXI;   
DOI  :  10.2172/988879
RP-ID  :  None
PID  :  OSTI ID: 988879
Others  :  TRN: US201019%%310
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】

Exposure to mercury (Hg) commonly results from eating fish containing bioaccumulated methylmercury (MeHg). However, conflicting observations and conclusions have arisen from the ongoing human studies of MeHg exposure from fish consumption. Resolving these uncertainties has important implications for human health since significant nutritional benefits will be lost if fish consumption is needlessly avoided. Selenium (Se), an important nutrient that is abundant in ocean fish, has a potent protective effect against Hg toxicity. This protective effect was thought to be due to the high binding affinities between Hg and Se resulting in Se sequestration of Hg to prevent its harmful effects. However, it is imperative to consider the opposing effect of Hg on Se physiology. Crucial proteins that require Se normally protect the brain and hormone-producing glands from oxidative damage. MeHg is able to cross all biological barriers and enter cells in these tissues, where its high Se affinity results in Se sequestration. Sequestration in association with Hg prevents Se from participating in proteins that perform essential antioxidant activities. Supplemental dietary Se is able to replace Se sequestered by Hg and maintain normal antioxidant protection of brain and glands. The goal of this research project was to assess the potency of normal dietary levels of Se in protection against MeHg toxicity. Results from this project indicate that MeHg toxicity is only evident in situations resulting in Hg occurring in high molar excess of Se. Additionally, the common method of MeHg risk assessments using measurements of toenail and blood levels of Hg was shown to provide an accurate reflection of Hg exposure but did not accurately indicate risk of toxicity resulting from that exposure. Instead, Hg:Se molar ratios are proposed as a superior means of assessing risks associated with MeHg exposure.

【 预 览 】
附件列表
Files Size Format View
RO201705190000124LZ 487KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:74次