科技报告详细信息
Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs
Corwin, William R1  Ballinger, R.2  Majumdar, S.3  Weaver, K. D.4 
[1] ORNL;Massachusetts Institute of Technology (MIT);Argonne National Laboratory (ANL);Idaho National Laboratory (INL)
关键词: ALLOYS;    BUILDING MATERIALS;    CONTROL ELEMENTS;    CRACK PROPAGATION;    FABRICATION;    FISSION PRODUCT RELEASE;    GAS COOLED REACTORS;    HEAT EXCHANGERS;    HEAT TRANSFER;    HEAT TREATMENTS;    KNOWLEDGE BASE;    PRESSURE DROP;    PRESSURE VESSELS;    PROCESS CONTROL;    REACTOR COMPONENTS;    REACTOR CORES;    REACTOR SAFETY;    SAFETY;    TURBOMACHINERY;    WELDING;   
DOI  :  10.2172/1027385
RP-ID  :  ORNL/TM-2007/147
PID  :  OSTI ID: 1027385
Others  :  Other: 401001060
Others  :  NUREG/CR-6944, Vol. 4
Others  :  TRN: US1105784
美国|英语
来源: SciTech Connect
PDF
【 摘 要 】

The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures for on-site welding, post-weld heat treatment (PWHT), and inspections will be required for the materials of construction. High-importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy sections; and the maintenance of high emissivity of the RPV materials over their service lifetime to enable passive heat rejection from the reactor core. All identified phenomena related to the materials of construction for the IHX, RPV, and other components were evaluated and ranked for their potential impact on reactor safety.

【 预 览 】
附件列表
Files Size Format View
RO201705180002499LZ 469KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:47次