期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:225
A uniform estimate of the relative projection constant
Article
Kobos, Tomasz1 
[1] Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词: Minimal projection;    Finite-dimensional normed space;   
DOI  :  10.1016/j.jat.2017.09.006
来源: Elsevier
PDF
【 摘 要 】

The main goal of the paper is to provide a quantitative lower bound greater than 1 for the relative projection constant lambda(Y, X), where X is a subspace of l(2p)(m) space and Y subset of X is an arbitrary hyperplane. As a consequence, we establish that for every integer n >= 4 there exists an n-dimensional normed space X such that for an every hyperplane Y and every projection P : X -> Y the inequality parallel to P parallel to > 1 + (8(n+3)(5))(-30(n+3)2) holds. This gives a non-trivial lower bound in a variation of problem proposed by Bosznay an Garay in 1986. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2017_09_006.pdf 281KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次