
Available online at www.sciencedirect.com

ScienceDirect

Journal of Approximation Theory 225 (2018) 58–75
www.elsevier.com/locate/jat

Full Length Article

A uniform estimate of the relative projection constant
Tomasz Kobos

Faculty of Mathematics and Computer Science, Jagiellonian University, Lojasiewicza 6, 30-348 Krakow, Poland

Received 15 November 2016; received in revised form 29 June 2017; accepted 25 September 2017
Available online 6 October 2017

Communicated by Winfried Sickel

Abstract

The main goal of the paper is to provide a quantitative lower bound greater than 1 for the relative
projection constant λ(Y, X ), where X is a subspace of ℓm

2p space and Y ⊂ X is an arbitrary hyperplane.
As a consequence, we establish that for every integer n ≥ 4 there exists an n-dimensional normed
space X such that for an every hyperplane Y and every projection P : X → Y the inequality ∥P∥ >

1 +

(
8(n + 3)5

)−30(n+3)2

holds. This gives a non-trivial lower bound in a variation of problem proposed
by Bosznay and Garay in 1986.
c⃝ 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a real Banach space and Y its closed subspace. We say that a linear bounded operator
P : X → Y is a projection if P|Y = IdY . Let us denote the set of all projections from X onto Y
by P(X, Y ). The relative projection constant of Y is defined as

λ(Y, X ) = inf{∥P∥ : P ∈ P(X, Y )}.

Moreover, if a projection P : X → Y satisfies ∥P∥ = λ(Y, X ) then P is called a minimal
projection.
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The theory of projection constants and minimal projections has been an important field of
research in functional analysis and approximation theory for several decades. Large part of
this investigation has focused on the equality λ(Y, X ) = 1, i.e. when there exists a projection
P : X → Y of norm 1. In such a situation we say that Y is a one-complemented subspace of X .

One-complemented subspaces of classical Banach spaces have been studied intensively by
many authors — see for example: [1,6,4,9,13,2,3,15,16,18,12,21]. See also [17] for a survey
on this topic. In the setting of n-dimensional normed spaces, most spaces actually do not
possess any nontrivial one-complemented subspaces. Bosznay and Garay in 1986 (see [5]) have
proved that if isometric classes of n-dimensional normed spaces are made into the metric space
(called Banach–Mazur compactum) then the set of spaces without non-trivial one-complemented
subspaces is open and dense. In other words, for a general normed space X of dimension n we
have λ(Y, X ) > 1 for every subspace Y such that 2 ≤ dim Y ≤ dim X − 1. Therefore, a natural
question comes to mind: how far can minimum of relative projection constants deviate from 1?
Formally, Problem 2 from the paper [5] of Bosznay and Garay asks about finding upper and lower
bounds for supX infY⊂Xλ(Y, X ), where X is a real n-dimensional normed space and Y ⊂ X is a
subspace of dimension at least 2 and at most n − 1. We feel that this is a fascinating problem of
a general theory of projections which has not received an adequate attention and can be a fruitful
area of further research. To this day, the only results in this direction that are known to author are
presented in [10] and are concerned only with the upper bounds.

The aim of this paper is to provide a construction of a class of n-dimensional normed spaces,
for which every hyperplane has a relative projection constant greater than 1+ε0 for some explicit
ε0. We work therefore with a variant of a problem posed by Bosznay and Garay, concerned only
with projections onto hyperplanes.

Such a class of n-dimensional normed spaces is actually known for a much longer time.
Bohnenblust in 1941 (see [4]) proved that a typical subspace of space ℓm

p with appropriately large
codimension usually satisfies such a condition. Let us recall that the ℓm

p space, where m ≥ 1 is
an integer and p ≥ 1 is real number, is defined as the normed space (Rm, ∥ · ∥p) with

∥x∥p = (|x1|
p
+ |x2|

p
+ · · · + |xm |

p)
1
p .

Bohnenblust showed that there are no one-complemented subspaces, but did not provide any
explicit lower bound for relative projection constant that is greater than 1. Our goal is to establish
such a lower bound in the similar class of normed spaces. We will consider subspaces of the ℓm

2p
space of codimension at least 2 with p being a positive integer. Lower bound on the relative
projection constant depends on p, m, codimension and on a subspace. Precisely we prove the
following

Theorem 1.1. Let n ≥ 4, p ≥
m
2 and m ≥ n + 2 be integer numbers. Suppose that

f1, f2, . . . , fm : Rn
→ R are non-zero functionals. Consider a normed space X = (Rn, ∥ · ∥)

with the norm defined as

∥x∥ =

(
m∑

i=1

| fi (x)|2p

) 1
2p

.

Let 0 < α ≤
1
2 be a real number such that for every 0 ≤ j < k < l ≤ m and 0 ≤ i ≤ m,

i ̸∈ { j, k, l} we have

dist( fi , lin{ f j , fk, fl}) ≥ α.
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Let β > 0 be real number such that for every 0 ≤ j < k ≤ m and x ∈ Rn we have

max{| f j (x)|, | fk(x)|} ≤ β max
1≤i≤m,i ̸∈{ j,k}

| fi (x)|.

Then, for every (n − 1)-dimensional subspace Y ⊂ X we have λ(Y, X ) > 1 + ε0, where

ε0 = ε0(n, p, m, α, β) =
(
m + 2β2p)−7(

α−6214n3m11 p4)−12pm
.

The distance in the definition of parameter α is measured with respect to the norm ∥ · ∥
⋆, dual

to ∥ · ∥ which is defined by the functionals fi . Note also that our construction does not work for
n = 3.

An application of Theorem 1.1 for a certain choice of functionals fi ’s gives us the following

Corollary 1.2. For every integer n ≥ 4 there exists an n-dimensional normed space X such that

λ(Y, X ) > 1 +
(
8(n + 3)5)−30(n+3)2

> 1 + exp(−Cn2 log n)

for an arbitrary (n − 1)-dimensional subspace Y of X (C > 0 is an absolute constant).

The lower bounds presented above are probably very far from being optimal. However, in spite
of the lack of any progress in the problem proposed by Bosznay and Garay and in the further
development of the example provided by Bohnenblust, we believe that such lower bounds might
still be interesting. We also hope that our results can bring some attention to the problems of this
category and much more efficient methods could be developed in consequence. Moreover, we
feel that certain parts of our reasoning may be of independent interest. In Section 2 we prove
Lemma 2.2 which potentially might be a useful tool for providing lower bounds on the relative
projection constants. In Section 3 we discuss some general problem about linear functionals,
which seems to be an interesting open problem of discrete geometry and can turn out to be a
fruitful research area. Sections 4 and 5 are devoted for proving Theorem 1.1 and Corollary 1.2
respectively. In general, our approach is elementary. In the last section of the paper we discuss
several directions for a possibility of further research.

It is important to note that in the asymptotic setting there are some remarkable results
concerning existence of spaces with large relative projection constants. Gluskin in [8] and Szarek
in [20] have used probabilistic constructions to prove that there are n-dimensional normed spaces
for which every subspace Y of dimension m in the interval of the form [αn, βn] has relative
projection constant of order c

√
m or similar. Both papers contain several results of this type. See

also [11] for a similar construction. Even if these results are very deep, they do not yield any
quantitative lower bounds in our problems and none of them touches the case of hyperplanes.
Nevertheless, they give an important insight and leave a hope that lower bounds obtained in our
paper can be improved significantly.

2. Lemma about projections with small norms

Let X be a Banach space. It is easy to see that every projection P : X → Y , where Y = ker f
is a hyperplane, can be represented in the form P(x) = x − f (x)w, for some w ∈ X satisfying
f (w) = 1. Let us also recall that if x ∈ X is nonzero then every continuous linear functional
f : X → R such that ∥ f ∥ = 1 and f (x) = ∥x∥ is called a supporting functional of x . By the
Hahn–Banach Theorem every nonzero element has at least one supporting functional. If every
nonzero vector x ∈ X has the unique supporting functional, then we say that the Banach space X
is smooth. In the study of one-complemented hyperplanes the following simple lemma is often
crucial (see e.g. [4,9]).
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Lemma 2.1. Let X be a smooth Banach space and let Y = ker f be a hyperplane in X. Suppose
that P : X → Y , where P(x) = x − f (x)w and f (w) = 1 is a projection of norm 1. Then
fy(w) = 0 for every nonzero y ∈ Y , where fy is the unique supporting functional of y.

To study projections of small norm we shall need an extension of this lemma, which gives an
upper bound for the value | fy(w)|. It is natural to suspect that quality of such an upper bound
should depend on the quality of smoothness of X , which is connected to the convexity of the
dual space X ⋆. Therefore to state our result, we shall use the modulus of convexity of the space
X ⋆. Let us recall that for a general Banach space X the modulus convexity δX : [0, 2] → R is
defined as

δX (t) = inf
{

1 −

⏐⏐⏐⏐⏐⏐⏐⏐ x + y
2

⏐⏐⏐⏐⏐⏐⏐⏐ : ∥x∥, ∥y∥ ≤ 1 and ∥x − y∥ ≥ t
}

.

We have the following

Lemma 2.2. Let X be a smooth Banach space and let Y = ker f be a hyperplane of X, where
f ∈ SX⋆ . Suppose that P : X → Y is a projection of norm not greater than 1 + r , where
P(x) = x − f (x)w for some w satisfying f (w) = 1 and r ≥ 0. Let t0 ∈ [0, 2] be such a number
that δX⋆ (t0) ≥

r
2+2r . Then | fy(w)| ≤ t0(2 + r ) for every nonzero y ∈ Y .

Proof. It is enough to consider vectors y of norm 1. Let us therefore fix unit vector y ∈ Y and
consider the functional g = fy ◦ P . Obviously g(y) = 1 and ∥g∥ ≤ 1 + r . Hence⏐⏐⏐⏐⏐⏐⏐⏐ fy +

g
1 + r

⏐⏐⏐⏐⏐⏐⏐⏐ ≥

⏐⏐⏐⏐ fy(y) +
g(y)
1 + r

⏐⏐⏐⏐ =
2 + r
1 + r

.

On the other hand⏐⏐⏐⏐⏐⏐⏐⏐ fy +
g

1 + r

⏐⏐⏐⏐⏐⏐⏐⏐ ≤ 2 − 2δX⋆

(⏐⏐⏐⏐⏐⏐⏐⏐ fy −
g

1 + r

⏐⏐⏐⏐⏐⏐⏐⏐) .

Consequently

δX⋆

(⏐⏐⏐⏐⏐⏐⏐⏐ fy −
g

1 + r

⏐⏐⏐⏐⏐⏐⏐⏐) ≤
r

2 + 2r
≤ δX⋆ (t0),

and therefore
⏐⏐⏐⏐ fy −

g
1+r

⏐⏐⏐⏐ ≤ t0 as the modulus of convexity is non-decreasing.
It follows that

| fy(w)| =

⏐⏐⏐⏐ fy(w) −
g(w)
1 + r

⏐⏐⏐⏐ ≤ t0 · ∥w∥.

To reach the conclusion it is therefore enough to bound the norm of w. Fix ε > 0 and let x0 be
unit vector such that f (x0) ≥ 1 − ε. Then

(1 − ε)∥w∥ − 1 ≤ ∥x0 − f (x0)w∥ = ∥P(x0)∥ ≤ 1 + r.

Since ε can be arbitrary small we have ∥w∥ ≤ 2 + r and the proof is finished. □

Note that the proof works for an arbitrary smooth Banach X , although we shall use it only
in the finite-dimensional setting. We believe that the lemma above may have some potential for
providing lower bounds of the relative projection constant, when one knows something about the
modulus of convexity of the dual space and the form of the supporting functionals.
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3. Estimating the max–min of functionals

Let ∥·∥ be a norm in Rn and suppose that some collection of m norm-one (in the dual norm of
∥·∥) functionals f1, f2, . . . , fm is given. It is then natural to ask about estimations on the quantity
max∥x∥=1min1≤i≤m | fi (x)|. We believe that such a problem could already be investigated, at least
in the case of the Euclidean norm. Nevertheless, we shall establish lower bound on this quantity,
as we have not found any information concerning this kind of problem. Our approach is based
on measure estimations. We start with

Lemma 3.1. Let n ≥ 4 be an integer. Suppose that the unit (n−1)-sphere Sn−1 of Rn is equipped
with the normalized Lebesgue measure µ. Then for every norm-one functional f : Rn

→ R and
t ∈ [0, 1] the measure of the set

S = {x : x ∈ Sn−1 and | f (x)| ≤ t}

is less than t
√

n.

Proof. Let Ak(r ) denote the surface area of the k-sphere in Rk+1 of radius r calculated in the
usual way. Then it is easy to see that

µ(S) =
2

An−1(1)

∫ 1

arccos t
An−2 (sin α) dα =

2An−2(1)
An−1(1)

∫ 1

arccos t
(sin α)n−2 dα

=
2An−2(1)
An−1(1)

∫ t

0

(
1 − u2) n−3

2 du ≤
2An−2(1)
An−1(1)

∫ t

0
1 du ≤

2t An−2(1)
An−1(1)

.

We shall now upper bound the ratio An−2(1)
An−1(1) with the help of closed forms for Ak(r ) and Stirling’s

approximation formula. In version of Robbins (see [19]) it states that for every positive integer
m the following inequalities are true:

√
2πmm+

1
2 e−me

1
12m+1 ≤ m! ≤

√
2πmm+

1
2 e−me

1
12m . (1)

We assert that
An−2(1)
An−1(1)

≤

√
n

2
.

Suppose that n = 2k + 1 is an odd number. Then k ≥ 2 and

An−2(1)
An−1(1)

=
A2k−1(1)
A2k(1)

=
(2k − 1)!

22k−1((k − 1)!)2 .

By estimations (1) and easily verified inequality (1 +
1
m )m+1 <

√
π
2 e (for m ≥ 2) we have

(2k − 1)!
22k−1((k − 1)!)2 ≤

(2k − 1)2k−
1
2 · e−2k+1

· e
1

12(2k−1)

√
2π · 22k−1 · (k − 1)2k−1 · e−2(k−1) · e

2
12(k−1)+1

=
√

2k − 1 ·
1

√
2πe

·
e

1
12(2k−1)

e
2

12(k−1)+1

(
2k − 1
2k − 2

)2k−1

=
√

2k − 1 ·
1

√
2πe

·
e

1
12(2k−1)

e
2

12(k−1)+1
·

(
1 +

1
2k − 2

)2k−1
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<
1

√
2πe

· 1 ·

√
π

2
e

=
1
2

√
2k − 1 =

1
2
√

n.

Now we shall consider the case n = 2k. We have
An−2(1)
An−1(1)

=
A2k−2(1)
A2k−1(1)

=
22k−3

· (k − 2)! · (k − 1)!
π (2k − 3)!

.

For k = 2 our assertion follows easily. For k ≥ 3 we apply the Stirling’s approximation (1) again
and a simple estimation e

1
8 <

√
π
2 to get

22k−3
· (k − 2)! · (k − 1)!
π (2k − 3)!

≤

√
2 · 22k−3

· (k − 2)k−
3
2 · (k − 1)k−

1
2 · e2k−3

· e
1

12(k−2) +
1

12(k−1)

√
π · (2k − 3)2k−

5
2 e2k−3e

1
12(2k−3)+1

=

√
2

4
√

π
·

(2k − 2)k−
1
2 · (2k − 4)k−

1
2

(2k − 3)2k−1 ·
(2k − 3)

3
2

k − 2
· e

1
12(k−2) +

1
12(k−1) −

1
12(2k−3)+1

=

√
2

4
√

π
·

(
(2k − 3)2

− 1
(2k − 3)2

)k−
1
2

·
(2k − 3)

3
2

k − 2
· e

1
12(k−2) +

1
12(k−1) −

1
12(2k−3)+1

≤

√
2

4
√

π
· 1 ·

(2k − 3)
3
2

k − 2
· e

1
8 <

√
2

4
√

π
·

(2k − 3)
3
2

k − 2
·

√
π

2
=

(2k − 3)
3
2

4(k − 2)
.

By using an inequality (2k − 3)3
≤ 8k(k − 2)2 that can be checked by hand for k ≥ 3 we

conclude finally that

(2k − 3)
3
2

4(k − 2)
≤

√
2k
2

=

√
n

2
.

Thus

µ(S) ≤
2t An−2(1)

An−1(1)
≤ t

√
n

and the lemma is proved. □

Main estimate of this section is given by

Lemma 3.2. Let ∥ · ∥ be a norm in Rn (where n ≥ 4) and let f1, f2, . . . , fm be nonzero
functionals. Then, there exists y ∈ Rn such that ∥y∥ = 1 and

| fi (y)| ≥
∥ fi∥

nm
,

for every i = 1, 2, . . . , m.

Proof. By rescaling we can assume that ∥ fi∥ = 1 for every 1 ≤ i ≤ m. First suppose that
∥ · ∥ = ∥ · ∥2 is the Euclidean norm. By Lemma 3.1 for

Si =

{
x : ∥x∥2 = 1 and | fi (x)| ≤

1
√

nm

}
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we have µ(Si ) < 1
m . In consequence

µ(S1 ∪ S2 ∪ · · · ∪ Sm) ≤ µ(S1) + µ(S2) . . . + µ(Sm) <
m
m

= 1.

It follows that there exists y ∈ Rn such that ∥y∥2 = 1 and | fi (y)| ≥
1

√
nm for every

i = 1, 2, . . . , m.
Suppose now that ∥ · ∥ is an arbitrary norm in Rn . By the John Ellipsoid Theorem there exists

a linear transformation T : Rn
→ Rn such that

∥x∥2 ≤ ∥T x∥ ≤
√

n∥x∥2

for any x ∈ Rn . Let f̃i = fi ◦ T for i = 1, 2, . . . , m. It is easy to check that ∥ f̃ ∥2 ≥ 1. Indeed,
consider x0 satisfying ∥x0∥ = 1 and | fi (x0)| = 1. Then

∥T −1(x0)∥2 ≤ ∥T (T −1(x0))∥ = ∥x0∥ = 1

and

| f̃i (T −1(x0))| = | fi (x0)| = 1.

In consequence, we can apply the previous part to the f̃i ’s considered in the Euclidean norm. It
yields an existence of y such that ∥y∥2 = 1 and

| fi (T y)| = | f̃i (y)| ≥
1

√
nm

.

However, ∥T (y)∥ ≤
√

n and therefore after an appropriate rescaling the vector T (y) satisfies the
desired conditions. □

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. To make use of Lemma 2.2 we need some information
about the modulus of convexity of the dual of a subspace of ℓm

2p space. We take care of that in
the two following lemmas. Note that in fact we need estimation on the modulus of convexity of
a quotient space of ℓm

q , where q =
2p

2p−1 .

Lemma 4.1. Let 1 ≤ q ≤ 2. Then the modulus of convexity of the space ℓn
q satisfies

δℓn
q (t) ≥

q−1
8 t2 for every t ∈ [0, 2].

Proof. See [14]. □

The next lemma basically says that the operation of taking a quotient does not worsen the
convexity.

Lemma 4.2. Let X be a finite dimensional Banach space and Y its subspace. Then δX/Y (t) ≥

δX (t) for every t ∈ [0, 2].

Proof. Let us recall that norm ∥[x]∥X/Y in the quotient space is defined as ∥[x]∥X/Y = dist(x, Y ).
For every x ∈ X we clearly have ∥[x]∥X/Y ≤ ∥x∥. Let us fix t ∈ [0, 2] and ε > 0. Choose
x, y ∈ X such that ∥[x]∥X/Y , ∥[y]∥X/Y ≤ 1, ∥[x − y]∥X/Y ≥ t and

δX/Y (t) ≥ 1 −

⏐⏐⏐⏐⏐⏐⏐⏐[ x + y
2

]⏐⏐⏐⏐⏐⏐⏐⏐− ε.
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All of these inequalities are not changed if we replace x and y by x − x1 and y − y1 respectively,
where x1, y1 ∈ Y satisfy dist(x, Y ) = ∥x − x1∥, dist(y, Y ) = ∥y − y1∥ (such x1, y1 exist
because of finite dimension). Therefore we can assume that ∥x∥ ≤ 1 and ∥y∥ ≤ 1. Then we also
have ∥x − y∥ ≥ ∥[x − y]∥X/Y ≥ t. Moreover

δX (t) ≤ 1 −

⏐⏐⏐⏐⏐⏐⏐⏐ x + y
2

⏐⏐⏐⏐⏐⏐⏐⏐ ≤ 1 −

⏐⏐⏐⏐⏐⏐⏐⏐[ x + y
2

]⏐⏐⏐⏐⏐⏐⏐⏐ ≤ δX/Y (t) + ε.

Since ε can be arbitrarily small it follows that δX/Y (t) ≥ δX (t) for every t ∈ [0, 2] and the proof
is finished. □

We need also a formula for a supporting functional in the case of a subspace of ℓm
2p space. It

is given in the next lemma.

Lemma 4.3. Let X = (Rn, ∥ · ∥) be the normed space defined in Theorem 1.1. Let y ∈ X be
nonzero vector. Then the supporting functional fy of vector y is given by

fy(x) =
1

∥y∥2p−1

m∑
i=1

fi (y)2p−1 fi (x).

Proof. Obviously fy(y) = ∥y∥ and it suffices to check that ∥ fy∥ ≤ 1. But this follows directly
from Hölder’s inequality. □

The well-known characterization of one-complemented subspaces of classical ℓm
p spaces (see

for example [9] for much more general result) states that λ(ker f, ℓm
p ) = 1 if and only if the

vector corresponding to a functional f has at most two coordinates that are different from 0. In
other words, if we denote by e(i) the unit vectors from the canonical basis then λ(ker f, ℓm

p ) = 1
if and only if f = ae(i) for some 1 ≤ i ≤ m, a ̸= 0 or f = ae(i) + be( j) for 1 ≤ i < j ≤ m
and a, b ̸= 0. In our setting we have corresponding situations in which functional f is close
to some functional of the form a fi or a fi + b f j (where f1, f2, . . . , fm are functionals defining
the subspace). It turns out that in these cases the relative projection constant is still greater than
1, but some special treatment is necessary. We shall thus consider three cases: functional f is
close to a functional of the form a fi , functional f is close to a functional of the form a fi + b f j

and neither of these. Although reasoning in each of these possibilities runs along similar lines,
there are some adjustments necessary to fit the argument to each situation. In fact, much of the
difficulty of the proof of Theorem 1.1 is hidden in a careful choice of the precise range in which
we say that f is “close” to a fi or a fi + b f j . It is crucial to know that f cannot be close to two
functionals of this form at the same time. We establish this type of result in the two following
lemmas.

Lemma 4.4. Let be ∥ · ∥ be an arbitrary norm in Rn and let f, f1, . . . , fm ∈ Rn . Assume that
0 < α ≤

1
2 is a real number such that for every 0 ≤ j < k < l ≤ m and 0 ≤ i ≤ m, i ̸∈ { j, k, l}

we have

dist
(

fi , lin{ f j , fk, fl}
)

≥ α,

where the distance is with respect to the norm ∥·∥. Suppose that there exist indices 1 ≤ k, l ≤ m,
k ̸= l such that ∥ fk + a0 fl + r0 f ∥ ≤

α
2 for some a0, r0 ∈ R. Then ∥ fi + a f j + r f ∥ ≥

α
2 for

every 1 ≤ i, j ≤ m, i ̸∈ { j, k, l}, j ̸= k and a, r ∈ R.
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Proof. Assume that for some i, j, a, r as above the opposite inequality is true. It is clear that
r, r0 are nonzero and to reach contradiction we can suppose that |r0| ≥ |r |, as the conditions are
now symmetric. It follows that

∥ fi + a f j + r f ∥ =

⏐⏐⏐⏐⏐⏐⏐⏐ fi + a f j +
r
r0

( fk + a0 fl + r0 f ) −
r
r0

( fk + a0 fl)

⏐⏐⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐⏐⏐( fi + a f j −
r
r0

fk −
a0r
r0

fl

)
+

r
r0

( fk + a0 fl + r0 f )

⏐⏐⏐⏐⏐⏐⏐⏐ ≥ α −

⏐⏐⏐⏐ r
2r0

⏐⏐⏐⏐α ≥
α

2
.

This is a contradiction with the assumption and the lemma is proved. □

The result above does not cover the case i = l, which shall be treated in the next lemma.

Lemma 4.5. Let be ∥ · ∥ be an arbitrary norm in Rn and let f, f1, . . . , fm ∈ Rn . Assume that
0 < α ≤

1
2 is a real number such that for every 0 ≤ j < k < l ≤ m and 0 ≤ i ≤ m, i ̸∈ { j, k, l}

we have

dist
(

fi , lin{ f j , fk, fl}
)

≥ α,

where the distance is with respect to the norm ∥ · ∥. Suppose moreover that 0 < L < K < 1
2

are real numbers such that Kα > 4L. Assume that there exist indices 1 ≤ k, l ≤ m, k ̸= l such
that ∥ fk + a0 fl + r0 f ∥ ≤ L for some a0, r0 ∈ R and ∥ fl + r f ∥ ≥ K for every r ∈ R. Then
∥ fi + a f j + r f ∥ ≥

Kα
2 for every i, j ∈ {1, 2, . . . , m} \ {k}, i ̸= j and a, r ∈ R.

Proof. By Lemma 4.4 it is enough to consider the case i = l. Suppose that ∥ fl +a f j +r f ∥ < Kα
2 .

Then
Kα

2
> ∥( fl + r f ) + a f j∥ ≥ K − |a|

and therefore |a| ≥ K
(
1 −

α
2

)
.

Assume that |r | ≥ |r0|. We obtain

∥ fl + a f j + r f ∥ =

⏐⏐⏐⏐⏐⏐⏐⏐ fl + a f j +
r
r0

( fk + a0 fl + r0 f ) −
r
r0

fk −
a0r
r0

fl

⏐⏐⏐⏐⏐⏐⏐⏐
≥

⏐⏐⏐⏐ r
r0

⏐⏐⏐⏐α −

⏐⏐⏐⏐ r
r0

⏐⏐⏐⏐ L ≥ α − L > α −
Kα

2
−

Kα2

2
≥

Kα

2

which contradicts our assumption. Hence |r | < |r0|. We can estimate similarly like before to get

∥ fl + a f j + r f ∥ =

⏐⏐⏐⏐⏐⏐⏐⏐ fl + a f j +
r
r0

( fk + a0 fl + r0 f ) −
r
r0

fk −
a0r
r0

fl

⏐⏐⏐⏐⏐⏐⏐⏐
≥ q|a|α −

⏐⏐⏐⏐ r
r0

⏐⏐⏐⏐ L ≥ K
(

α −
α2

2

)
− L >

Kα

2
.

We have again reached a contradiction, which finishes the proof of the lemma. □

One of the key ingredients in the original reasoning of Bohnenblust in [4] was the invertibility
of the Vandermonde matrix. For our purposes we need some quantitative version of this result.
We shall use the following estimation due to Gautschi. For a matrix A of dimensions m × m we
consider its norm as of an operator A : ℓm

∞
→ ℓm

∞
, that is ∥Ax∥ = sup∥x∥∞≤1∥Ax∥∞.
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Lemma 4.6. Let x1, x2, . . . , xm be pairwise distinct real numbers and let V be the Vandermonde
matrix with columns of the form (1, xi , x2

i , . . . , xm−1
i ). Then

∥V −1
∥ ≤ max

1≤i≤m

∏
j ̸=i

1 + |x j |

|x j − xi |
.

Proof. See [7]. □

Before giving a proof of Theorem 1.1 we need a last small observation.

Lemma 4.7. Let X be a Banach space. Suppose that f, g : X → R are two linear functionals
such that ∥ f − rg∥ ≥ a for every r ∈ R and some a ∈ R. Then ∥ f |ker g∥ ≥ a.

Proof. By the Hahn–Banach Theorem there exists a linear functional f̃ whose restriction to
ker g is the same as restriction of f and its norm is equal to ∥ f |ker g∥. We can write f − f̃ = rg
for some real r . Then

∥ f |ker g∥ = ∥ f̃ ∥ = ∥ f − rg∥ ≥ a. □

Finally we can move to the proof of our main result.

Proof of Theorem 1.1. We begin with introducing some notation. Let

ε1 = (m + β2p
− 1)

−1
p α4p+4m2−(8p+4m+6)n−(4p+4m)m−(4p+6m) p−(2m+1),

R1 = 8
√

ε1 p, K =

(
R1

4

) 1
2p−1

,

ε2 = K 2m(m + 2β2p
− 2)

−1
p α4p+4m2−(8p+4m+6)n−(4p+4m)m−(4p+6m) p−(2m+1),

R2 = 8
√

ε2 p, L =
R2

22p(2p − 1)
,

ε3 = m
−1
p L2m K 4p+2m2−(4p+6)n−(4p+4m)m−(4p+6m) p−(2m+1),

R3 = 8
√

ε3 p.

Let Y = ker f , where ∥ f ∥ = 1 and suppose that λ(Y, X ) = 1 + ε. We will show a stronger
statement. We shall prove that

• if there exist 1 ≤ k ≤ m and r0 ∈ R such that ∥ fk + r0 f ∥ ≤ K , then ε ≥ ε1.
• If there exists a pair 1 ≤ k < l ≤ m such that ∥ fk + a0 fl + r0 f ∥ ≤ L for some a0, r0 ∈ R,

but ∥ fi + r f ∥ > K for every 1 ≤ i ≤ m and every r ∈ R, then ε ≥ ε2.
• If ∥ fi + r f ∥ > K for every 1 ≤ i ≤ m, r ∈ R and ∥ fi + a f j + r f ∥ > L for every

1 ≤ i, j ≤ m, i ̸= j , a, r ∈ R, then ε ≥ ε3.

Conclusion of the theorem will then follow from the inequality ε3 ≥ ε0 which can be verified
with straightforward but a tedious computation.

Let P : X → Y be a projection such that ∥P∥ = λ(Y, X ) = 1 + ε and suppose that
P(x) = x − f (x)w for some w satisfying f (w) = 1. Fix a nonzero vector y ∈ Y . We shall
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bound | fy(w)| in terms of ε, where fy is the unique functional such that fy(y) = ∥y∥ and
| fy(x)| ≤ ∥x∥ for x ∈ X . Precisely, we shall prove that

| fy(w)| ≤ 8
√

εp. (2)

Indeed, by Lemma 2.2 we have | fy(w)| ≤ t0(2 + ε) for any t0 ∈ [0, 2] satisfying δX⋆ (t0) ≥
ε

2+2ε
. Note that X is clearly a subspace of ℓm

2p and therefore X ⋆ is a quotient space of ℓm
q = (ℓm

2p)⋆,

where q =
2p

2p−1 . Take t0 = 4
√

εp
2+2ε

. If ε ≤ ε1 then, by looking at the expression defining ε1, we
can easily verify that t0 ∈ [0, 2]. By combining Lemma 4.1 with Lemma 4.2 we get

δX⋆ (t0) = δX⋆

(
4
√

εp
2 + 2ε

)
≥ δℓm

q

(
4
√

εp
2 + 2ε

)
≥

q − 1
8

·
16εp

2 + 2ε

=
2p

2p − 1
·

ε

2 + 2ε
>

ε

2 + 2ε
.

We can therefore use Lemma 2.2 to obtain

| fy(w)| ≤ t0(2 + ε) = 4(2 + ε)
√

εp
2 + 2ε

< 4(2 + 2ε)
√

εp
2 + 2ε

= 4
√

εp(2 + 2ε) < 4
√

4εp = 8
√

εp,

as claimed.
Now we shall consider separately each of the cases listed at the beginning of the proof. First

suppose that there exist 1 ≤ k ≤ m and r0 ∈ R such that ∥ fk + r0 f ∥ ≤ K . We can assume that
k = m. For the sake of contradiction let us suppose that ε ≤ ε1. From (2) it follows that

| fy(w)| ≤ 8
√

ε1 p = R1.

Moreover, by Lemma 4.4 we have ∥ fi + a f j + r f ∥ ≥
α
2 for every 1 ≤ i, j ≤ m − 1, i ̸= j and

a, r ∈ R. By applying Lemmas 3.2 and 4.7 we can choose y ∈ Y, ∥y∥ = 1 such that

| fi (y)| ≥
α

2n(m − 1)
(3)

for 1 ≤ i ≤ m − 1. Obviously ∥ fi∥ ≤ 1 for 1 ≤ i ≤ m − 1 and therefore | fi (y)| ≤ 1.
Furthermore, since for 1 ≤ i < j ≤ m − 1 and r ∈ R we have⏐⏐⏐⏐⏐⏐⏐⏐ fi −

fi (y)
f j (y)

f j + r f
⏐⏐⏐⏐⏐⏐⏐⏐ ≥

α

2

it follows that⏐⏐⏐⏐⏐⏐⏐⏐ fi

fi (y)
−

f j

f j (y)
+

r
fi (y)

f
⏐⏐⏐⏐⏐⏐⏐⏐ ≥

α

2| fi (y)|
≥

α

2
.

Again by Lemmas 3.2 and 4.7, applied to the functionals of the form fi
fi (y) −

f j
f j (y) , we can find

z ∈ Y, ∥z∥ = 1 such that⏐⏐⏐⏐ fi (z)
fi (y)

−
f j (z)
f j (y)

⏐⏐⏐⏐ ≥
α

n(m − 2)(m − 1)
(4)

for every pair 1 ≤ i < j ≤ m − 1.
Now consider a polynomial P(t) defined as

P(t) =

m−1∑
i=1

( fi (y + t z))2p−1
· fi (w) =

m−1∑
i=1

( fi (y) + t fi (z))2p−1
· fi (w).
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By the formula for the supporting functional given in Lemma 4.3 it easily follows that

P(t) = fy+t z(w) · ∥y + t z∥2p−1
− fm(y + t z)2p−1

· fm(w).

By the previous part we have | fy+t z(w)| ≤ R1. Note also that since ∥ fm + r0 f ∥ ≤ K and
∥y + t z∥ ≤ 2 for −1 ≤ t ≤ 1 we get

| fm(y + t z)| = | fm(y + t z) + r0 f (y + t z)| ≤ 2K .

If x0 satisfies ∥x0∥ = 1 and f (x0) = 1, then ∥w∥ = ∥x0 − P(x0)∥ ≤ 2 + ε < 4. Therefore,
by combining the estimation above with an observation | fm(w)| ≤ ∥w∥ < 4 we obtain the
inequality

|P(t)| ≤ 22p−1 R1 + 22p+1 K 2p−1
= 22p−1 R1 + 22p−1 R1 = 22p R1.

for every t ∈ [−1, 1]. By the Markov inequality,

|P (k)(0)| ≤ 22p(2p − 1)2(2p − 2)2 . . . (2p − k)2 R1

for every 0 ≤ k ≤ m − 2. On the other hand, a simple calculation shows that

|P (k)(0)| = (2p − 1)(2p − 2) . . . (2p − k)
m−1∑
i=1

fi (y)2p−k−1 fi (z)k fi (w).

In particular⏐⏐⏐⏐⏐
m−1∑
i=1

fi (y)2p−k−1 fi (z)k fi (w)

⏐⏐⏐⏐⏐ ≤ 22p(2p)m−2 R1

for every 0 ≤ k ≤ m − 2. If we denote by A the Vandermonde matrix of the numbers{
fi (z)
fi (y)

}
i=1,2,...,m−1

and by v we denote the vector v = [ fi (y)2p−1 fi (w)]i=1,2,...,m−1 then we have

∥Av∥∞ ≤ 22p(2p)m−2 R1. On the other hand, we obviously have ∥Av∥∞ ≥
∥v∥∞

∥A−1∥
. Thus, by

using the upper bound on ∥A−1
∥ given in Lemma 4.6 combined with estimations (3) and (4), we

obtain(
α

2n(m − 1)

)2p−1

· max
1≤i≤m−1

| fi (w)| ≤ ∥A−1
∥ · 22p(2p)m−2 R1

≤

(
1 +

2n(m − 1)
α

)m−2(n(m − 1)(m − 2)
α

)m−2

22p(2p)m−2 R1.

Finally, from the inequality 1 +
2n(m−1)

α
< 2nm

α
and similar crude upper bounds we conclude that

max
1≤i≤m−1

| fi (w)| < α−(2p+2m)24p+2mn2p+2mm2p+3m pm R1 = (m + β2p
− 1)

−1
2p .

As ∥ f ∥ = 1 and f (w) = 1 it is clear ∥w∥ ≥ 1. But on the other hand, taking into account the
inequality | fm(w)| ≤ βmax1≤i≤m−1| fi (w)|, we also have

∥w∥ =

(
m∑

i=1

| fi (w)|2p

) 1
2p

<

(
m − 1

m + β2p − 1
+

β2p

m + β2p − 1

) 1
2p

= 1.

We have obtained a contradiction which finishes the proof in the considered case.
Now we shall consider the case in which there exists a pair 1 ≤ k < l ≤ m such that

∥ fk + a0 fl + r0 f ∥ ≤ L for some a0, r0 ∈ R, but ∥ fi + r f ∥ > K for every 1 ≤ i ≤ m and every
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r ∈ R. We may assume that k = m and l = m − 1. In this case we shall reach a contradiction
with an assumption that ε ≤ ε2. From (2) follows that

| fy(w)| ≤ 8
√

ε2 p = R2.

From Lemma 4.4 it follows that

∥ fi + r f ∥ ≥
α

2

for 1 ≤ i ≤ m − 1. Since we also have ∥ fm−1 + r f ∥ > K , according to Lemma 3.2 we can
choose y ∈ ker f , ∥y∥ = 1 such that

| fi (y)| ≥
α

2n(m − 1)
(1 ≤ i ≤ m − 2) and | fm−1(y)| ≥

K
n(m − 1)

. (5)

Let 1 ≤ i, j ≤ m − 1, i ̸= j and a, r ∈ R. By Lemma 4.5 we have

∥ fi + a f j + r f ∥ ≥
Kα

2

and therefore⏐⏐⏐⏐⏐⏐⏐⏐ fi −
fi (y)
f j (y)

f j + r f
⏐⏐⏐⏐⏐⏐⏐⏐ ≥

Kα

2
,

so that⏐⏐⏐⏐⏐⏐⏐⏐ fi

fi (y)
−

f j

f j (y)
+

r
fi (y)

f
⏐⏐⏐⏐⏐⏐⏐⏐ ≥

Kα

2| fi (y)|
≥

Kα

2
.

Lemma 3.2 combined with Lemma 4.7 yields a vector z ∈ ker f , ∥z∥ = 1 such that⏐⏐⏐⏐ fi (z)
fi (y)

−
f j (z)
f j (y)

⏐⏐⏐⏐ ≥
Kα

nm(m − 1)
, (6)

for every 1 ≤ i < j ≤ m − 1. Similarly like before we consider the polynomial P(t) defined as

P(t) =

m−1∑
i=1

( fi (y + t z))2p−1
· fi (w) − a2p−1

0 ( fm−1(y + t z))2p−1
· fm(w)

=

m−1∑
i=1

( fi (y) + t fi (z))2p−1
· fi (w) − a2p−1

0 ( fm−1(y) + t fm−1(z))2p−1
· fm(w)

=

m−2∑
i=1

( fi (y) + t fi (z))2p−1
· fi (w) + ( fm−1(y) + t fm−1(z))2p−1

× ( fm−1(w) − a2p−1
0 fm(w)).

Note that

| fm(y + t z) + a0 fm−1(y + t z)| = | fm(y + t z) + a0 fm−1(y + t z) + r0 f (y + t z)|

≤ L∥y + t z∥.
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Since | fm(y + t z)| ≤ ∥y + t z∥ we also have ∥a0 fm−1(y + t z)∥ ≤ ∥y + t z∥(1 + L). Therefore⏐⏐P(t) − fy+t z(w) · ∥y + t z∥2p−1
⏐⏐ =

⏐⏐⏐a2p−1
0 ( fm−1(y + t z))2p−1

+ ( fm(y + t z))2p−1
⏐⏐⏐

× ·| fm(w)|

=

⏐⏐⏐( fm(y + t z) + a0 fm−1(y + t z))
(

fm(y + t z)2p−2
− · · · + a2p−2

0 fm−1(y + t z)2p−2
)⏐⏐⏐

· | fm(w)|

≤ (2p − 1)L(1 + L)2p−2
| fm(w)∥y + t z∥2p−1.

In the previous part we have proved that ∥w∥ ≤ 4 and hence | fm(w)| ≤ 4. Thus we obtain an
upper bound on |P(t)| for t ∈ [−1, 1]

|P(t)| ≤ | fy+t z(w)| · ∥y + t z∥2p−1
+ 4(2p − 1)L(1 + L)2p−2

∥y + t z∥2p−1

≤ 22p−1 R2 + 24p−1(2p − 1)L = 22p−1 R2 + 22p−1 R2 = 22p R2.

Now we can follow the same idea as before of estimating the norm of the inverse of the
Vandermonde matrix combined with the inequalities (5) and (6) to conclude that(

α

2n(m − 1)

)2p−1

· max
1≤i≤m−2

| fi (w)| ≤ ∥A−1
∥ · 22p(2p)m−2 R2

≤

(
1 +

2n(m − 1)
α

)m−3

·

(
1 +

2n(m − 1)
K

)
·

(
n(m − 2)(m − 1)

Kα

)m−2

22p(2p)m−2 R2.

Hence

max
1≤i≤m−2

| fi (w)| < K −mα−(2p+2m)24p+2mn2p+2mm2p+3m pm R2 = (m + 2β2p
− 2)

−1
2p .

Now we can reach a contradiction in the same way as in the previous case as

∥w∥ =

(
m∑

i=1

| fi (w)|2p

) 1
2p

<

(
m − 2

m + 2β2p − 2
+

2β2p

m + 2β2p − 2

) 1
2p

= 1.

We move to the last part of the proof. In the remaining case we assume that ∥ fi + r f ∥ > K
for every 1 ≤ i ≤ m, r ∈ R and

∥ fi + a f j + r f ∥ > L

for every 1 ≤ i, j ≤ m, i ̸= j , a, r ∈ R. For the sake of contradiction we also suppose that
ε ≤ ε3. Then

| fy(w)| ≤ 8
√

ε3 p = R3.

Using the same reasoning as before, this time simply to the polynomial

P(t) =

m∑
i=1

fi (y + t z)2p−1
· fi (w)

for normed y, z ∈ ker f satisfying

| fi (y)| ≥
K

nm
,
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for 1 ≤ i ≤ m and⏐⏐⏐⏐ fi (z)
fi (y)

−
f j (z)
f j (y)

⏐⏐⏐⏐ ≥
2L

nm(m − 1)
,

for every 1 ≤ i < j ≤ m, we easily obtain the inequality(
K

nm

)2p−1

· max
1≤i≤m

| fi (w)| ≤

(
1 +

nm
K

)m−1
(

nm(m − 1)
2L

)m−1

22p−1(2p)m−1 R3,

which gives us

max
1≤i≤m

| fi (w)| < L−m K −(2p+m)22pn2p+2mm2p+3m pm R3 = m
−1
2p .

We can again bound the norm of w to get

1 ≤ ∥w∥ =

(
m∑

i=1

| fi (w)|2p

) 1
2p

<

(
m∑

i=1

1
m

) 1
2p

= 1.

We have obtained a contradiction that completes the last step of the proof. □

5. Proof of Corollary 1.2

In this section we apply Theorem 1.1 to establish Corollary 1.2.

Proof of Corollary 1.2. We will use Theorem 1.1 for explicit functionals f1, f2, . . . , fm . Let
X = (Rn, ∥ · ∥) where the norm ∥ · ∥ is defined as in Theorem 1.1 with m = n + 2, p = ⌈

n+2
2 ⌉,

fi (x) = xi for 1 ≤ i ≤ n, fn+1(x) = x1 + x2 + · · · + xn and fn+2(x) =
x1+2x2+···+nxn

n . We
shall estimate the parameters α and β of Theorem 1.1 for such a choice of functionals. It is
straightforward to do, albeit requires consideration of many cases.

First we shall prove that α ≥
1

2n , that is dist( fi , lin{ f j , fk, fl}) ≥
1

2n for every 0 ≤ j <

k < l ≤ n + 2, 0 ≤ i ≤ n + 2, i ̸∈ { j, k, l}. Note that for every vector v ̸= 0 such that
f j (v) = fk(v) = fl(v) = 0 we have

dist( fi , lin{ f j , fk, fl}) ≥
| fi (v)|
∥v∥

.

For different indices i, j, k, l we shall use different vectors v to get the desired lower bound.
Suppose that

• i, j, k, l ≤ n. Take v = e(i). Then ∥v∥ =

(
2 +

i2p

n2p

) 1
2p

≤ 2 and fi (v) = 1. Therefore the

distance is at least 1
2 .

• i, j, k ≤ n and l = n + 1. As n ≥ 4 we can pick s ∈ {1, 2, . . . , n} \ {i, j, k}. Take
v = e(i) − e(s). Then ∥v∥ ≤ 4 and fi (v) = 1. The distance is at least 1

4 .
• i, j, k ≤ n and l = n + 2. Pick s ∈ {1, 2, . . . , n} \ {i, j, k} and v = se(i) − ie(s). Then

∥v∥ =

(
s2p

+ i2p
+

|s−i |2p

n2p

) 1
2p

≤ 2n and fi (v) = s ≥ 1. The distance is at least 1
2n .

• i, j ≤ n, k = n + 1 and l = n + 2. Pick distinct s1, s2 ∈ {1, 2, . . . , n} \ {i, j} and v =

e(i) +
i−s2

s2−s1
e(s1) +

s1−i
s2−s1

e(s2). Then ∥v∥ =

(
1 +

(i−s1)2p
+(i−s2)2p

(s1−s2)2p

) 1
2p

≤
(
1 + 2n2p

) 1
2p ≤ 2n

and fi (v) = 1. The distance is at least 1
2n .
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• i = n + 1, j, k, l ≤ n. Pick s ∈ {1, 2, . . . , n} \ { j, k, l} and v = e(s). Then ∥v∥ ≤ 2 and
fi (v) = 1. The distance is at least 1

2 .
• i = n + 1, j, k ≤ n and l = n + 2. Pick distinct s1, s2 ∈ {1, 2, . . . , n} \ { j, k} and

v = s2e(s1) − s1e(s2). Then ∥v∥ ≤ 2n and | fi (v)| = |s1 − s2| ≥ 1. The distance is at least
1

2n .
• i = n + 2, j, k, l ≤ n. Pick s ∈ {1, 2, . . . , n} \ { j, k, l} and v = e(s). Then ∥v∥ ≤ 2 and

fi (v) =
s
n ≥

1
n . The distance is at least 1

2n .
• i = n + 2, j, k ≤ n and l = n + 1. Pick distinct s1, s2 ∈ {1, 2, . . . , n} \ { j, k} and

v = e(s1) − e(s2). Then ∥v∥ ≤ 4 and | fi (v)| =
|s2

1−s2
2 |

n ≥
2
n . The distance is at least 1

2n .

We have thus established that α ≥
1

2n . In a similar manner we will now upper bound the
parameter β by n2. In other words, we shall prove that for 0 ≤ j < k ≤ n + 2 and x ∈ Rn we
have

max{| f j (x)|, | fk(x)|} ≤ n2 max
1≤i≤m,i ̸∈{ j,k}

| fi (x)|.

We will do this by writing each functional fi (x) as a linear combination of every n of the
remaining ones with the sum of absolute values of coefficients not exceeding n2. In fact, suppose
that

• j = n + 1 and k = n + 2. Then fn+1 =
∑n

i=1 fi and fn+2 =
∑n

i=1i fi .
• j ≤ n and k = n + 2. Then f j = fn+1 −

∑
1≤i≤n,i ̸= j fi and fn+2 =

1
n

(
j fn+1 +

∑n
i=1

(i − j) fi ).
• j ≤ n and k = n + 1. Then f j =

n
j fn+2 −

∑
1≤i≤n,i ̸= j

i
j fi and fn+1 =

n
j fn+2 −∑

1≤i≤n,i ̸= j

(
i
j − 1

)
fi .

• j < k ≤ n. Then f j =
n
j fn+2 −

k
j fn+1 +

∑
1≤i≤n,i ̸= j

(
k
j −

i
j

)
fi and similarly fk =

n
k fn+2 −

j
k fn+1 +

∑
1≤i≤n,i ̸=k

(
j
k −

i
k

)
fi .

It is straightforward to check that in each of linear combinations listed above the sum of absolute
values of coefficients does not exceed n2. This proves our claim.

To finish the proof it is enough to see that in our case we have α−1
≤ 2(n +3) and 2p ≤ n +3.

Moreover m + 2β2p
≤ n + 2 + 2n2(n+3) and we can check by hand that

n + 2 + 2n2(n+3)
≤ (n + 3)2(n+3),

and thus

(n + 2 + 2n2(n+3))7
≤ (n + 3)14(n+3)

≤ (n + 3)2(n+3)2

since n ≥ 4. Therefore a straightforward bound yields

λ(Y, X ) > 1 + (n + 3)−2(n+3) ((n + 3)−62−16(n + 3)−3(n + 3)−11(n + 3)−4)6(n+3)2

> 1 +
(
8(n + 3)5)−30(n+3)2

,

for an arbitrary hyperplane Y ⊂ X and the conclusion follows. □

6. Concluding remarks

In the preceding sections we established a quantitative lower bound on relative projection
constant for hyperplanes of subspaces of ℓm

2p spaces. In particular, we proved an existence of
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an n-dimensional normed space in which every projection onto hyperplane has norm at least
1 +

(
8(n + 3)5)−30(n+3)2

> 1 + exp(−Cn2 log n). It is reasonable to conjecture that both of these
estimations could be significantly improved.

Problem 6.1. Improve lower bound given in Theorem 1.1 for hyperplanes of ℓm
2p spaces. Give

any non-trivial estimation in the three-dimensional case.

Clearly our result can be improved, as in many places we have used some crude bounds and
sacrificed precision of the estimation for a clarity of the reasoning. We believe however, that with
some more efficient ideas it is possible to obtain a lower bound of a much better order.

Problem 6.2. Improve lower bound given in Corollary 1.2. Give any non-trivial estimation in
the three-dimensional case. Is it true that there exists c > 0 such that for every n ≥ 3 there exists
an n-dimensional normed space X satisfying λ(Y, X ) > 1 + c for every hyperplane Y ⊂ X?

In this problem one can suspect that there is even more room for improvement. We believe
that our techniques could be used for a lot of other spaces as well. The two important elements:
modulus of convexity of the dual and form of the supporting functional are determined for
many classes of normed spaces. It is possible that some better estimate could be obtained for
subspaces of some Orlicz–Musielak spaces, which generalize ℓm

p spaces in a very practical way.
Probabilistic constructions also seem to be quite promising way to approach, even if they usually
work in the asymptotic setting.

Problem 6.3. Give analogues of Theorem 1.1 and Corollary 1.2 in the setting of an arbitrary
subspace Y ⊂ X such that 2 ≤ dim Y ≤ dim X − 1.

The problem above just rephrases the original question of Bosznay and Garay. We feel that
with some additional work, methods presented in the paper could be refined to yield a lower
bound for an arbitrary subspace.

We conclude the paper with the problem of discrete geometry originating from Section 3.

Problem 6.4. Let m, n ≥ 1 be integers. Consider a norm ∥·∥ ∈ Rn and collection of normed lin-
ear functionals f1, f2, . . . , fm : Rn

→ R. Provide some estimates of max∥x∥=1min1≤i≤m | fi (x)|.

The problem is formulated in a general way but we can propose some specific variations, all
of them seeming to be non-trivial. First of all we can fix the norm ∥ ·∥ to be specific (for example
some ℓp-norm) and ask for a best possible lower bound on the considered quantity. Usually it will
be probably extremely hard to give a closed formula for arbitrary m, n but here again we have
some possibilities. For example, we can fix m and let n → ∞ and determine the asymptotics, or
vice versa. Perhaps even in the cases of small m and arbitrary n the problem can be challenging.
Moreover, we can let norm ∥ · ∥ not to be fixed and try to find best possible lower bound for an
arbitrary norm. Here again we have different possibilities for m and n.

Some of the proposed variations may have been already considered in the literature, but it
seems that problems of this kind can make an interesting and broad area of further research.
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