期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY | 卷:123 |
A best constant for bivariate Bernstein and Szasz-Mirakyan operators | |
Article | |
De La Cal, J ; Cárcamo, J ; Valle, AM | |
关键词: best constants; modulus of continuity; Bernstein operators; Szasz-Mirakyan operators; bivariate operators; binomial distribution; Poisson distribution; | |
DOI : 10.1016/S0021-9045(03)00086-8 | |
来源: Elsevier | |
【 摘 要 】
For classical Bernstein operators over the unit square, we obtain the best uniform constant in preservation of the usual l(infinity)-modulus of continuity, at the same time we show that it coincides with the corresponding best uniform constant for bivariate Szasz operators. The result validates a conjecture stated in a previous paper. The proof involves both probabilistic and analytic arguments, as well as numerical computation of some specific values. (C) 2003 Elsevier Science (USA). All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_S0021-9045(03)00086-8.pdf | 138KB | download |