期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:249
On approximations for functions in the space of uniformly convergent Fourier series
Article
Boche, Holger1,2  Pohl, Volker1 
[1] Tech Univ Munich, Inst Theoret Informat Technol, Arcisstr 21, D-80333 Munich, Germany
[2] MCQST, D-80799 Munich, Germany
关键词: Approximation;    Fourier series;    Sampling;    Turing computable;    Uniform recovery;   
DOI  :  10.1016/j.jat.2019.105307
来源: Elsevier
PDF
【 摘 要 】

This paper studies the possibility of approximating functions in the space of all uniformly convergent symmetric and non-symmetric Fourier series from finitely many samples of the given function. It is shown that no matter what approximation method is chosen, there always exists a residual subset such that the approximation method diverges for all functions from this subset. This general result implies that there exists no method to effectively calculate the Fourier series expansion on a digital computer for all functions from the space of uniformly convergent Fourier series. In particular, there exists no Turing computable approximation method in these spaces. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2019_105307.pdf 513KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次