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Abstract
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1. Introduction and motivation

The Fourier series of a 2π periodic function f represents this function as an (infinite) sum
of pure frequencies

f (t) =
∑

∞

n=−∞
cn( f ) eint , t ∈ [−π, π) (1)

with its so called Fourier coefficients

cn( f ) =
1

2π

∫ π

−π

f (τ ) e−inτ dτ , n ∈ Z . (2)

This decomposition of a signal into its frequency components is a fundamental tool in
applied mathematics, engineering, and physics. Basically all areas of applied mathematics are
penetrated by Fourier analysis techniques to an extend that it seems almost impossible to work
in these areas without using Fourier analysis. Many physical phenomena, for example, are
much more simpler to describe and to analyze in the Fourier domain, i.e. in terms of the
Fourier coefficients [7,13]. Moreover, signal- and system theory as well as the design and the
implementation of filters in engineering and signal processing rely heavily on Fourier analysis
techniques [21–24,26].

Whether these Fourier analysis techniques are justifiable, depends on the question whether
the Fourier coefficients determine uniquely the function f and whether it is possible to
reconstruct f from its Fourier coefficients. So given the Fourier coefficients {cn( f )}n∈Z of an
f ∈ B in a Banach space B, the question is whether the sum in (1) exists and converges to f
in B. To investigate this, one considers usually the partial symmetric Fourier series(

SN f
)
(t) =

∑N
n=−N cn( f ) eint , t ∈ T := [−π, π) (3)

and asks whether limN→∞ ∥ f − SN f ∥B = 0 for all f ∈ B. Whether or not this is true,
depends on the Banach space B. Since its first application as an approximation method for
functions, numerous investigations on the convergence behavior of Fourier series on different
Banach spaces appeared. Examples include the construction of Kolmogoroff [17,18] showing
that there exist functions in L1(T) whose Fourier series diverges at every point in T. Carleson’s
theorem [6], on the other hand, shows that the Fourier series of an L2(T)-function converges
almost everywhere on T and Hunt [16] extended this result to all spaces L p(T) with 1 <

p < +∞. Moreover, by celebrated classical results due to du Bois-Reymond, Lebesgue, and
Fejér it is well known that the Fourier series of a continuous function may diverge at some
points in T [8,11,20], and Carleson’s theorem implies that the set of all divergence points has
Lebesgue measure zero for every f ∈ C(T). Nevertheless, the set of all f ∈ C(T) with a
pointwise divergent Fourier series is a residual set in C(T). Apart from these classical results
there are many more elaborated investigations on the convergence of the Fourier series [10,28]
or of other summation methods [12,19,34] in several function spaces, and we refer to books
like [9,14,29,35] for an overview on the extensive theory of Fourier series.

In the engineering literature (see, e.g., [21,23]), it is often assumed that for continuous
functions f , the corresponding partial Fourier series SN f converges to f as N → ∞. However,
as mentioned above, it is a classical result that this is generally not true. Then, there are
basically two ways to resolve this issue. On the one hand, one may apply alternative summation
methods (e.g. arithmetic means of the partial Fourier series) to achieve uniform convergence for
all f ∈ C(T). On the other hand, one may restrict the function space to an appropriate subset of
C(T). A particular appealing space might be the set Us of all continuous, 2π -periodic function
for which the partial Fourier series (3) converges uniformly on T. Equipped with an appropriate
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norm, Us becomes a Banach space, namely the largest space of continuous functions on which
the Fourier series converges uniformly on T (and in norm) for every f ∈ Us. In particular,
the Fourier series (3) allows us to determine to every f ∈ Us an approximation fN = SN f
in such a way, that ∥ f − fN ∥Us gets smaller than any given bound ϵ > 0 provided N ∈ N is
sufficiently large. So Us seems to be an appropriate function space for working with Fourier
series.

However, in practice, the function f is usually not given at all points t ∈ T but only on
a discrete subset ZN ⊂ T of finite cardinality |ZN | = Z N ∈ N. Therefore, it will generally
be impossible to calculate the integral (2) exactly from the known samples { f (τ ) : τ ∈ ZN }

of f . Nevertheless, it is possible to find numerical integration methods which determine
approximations cN ,n( f ) of the true Fourier coefficient cn( f ) based on the samples of f on
ZN such that

lim
N→∞

cN ,n( f ) = cn( f ) for all n ∈ Z .

If the exact Fourier coefficients cn( f ) in (3) are replaced by the approximations cN ,n( f ), the
question arises whether the series(̃

SN f
)
(t) =

∑N
n=−N cN ,n( f ) eint (4)

still converges to f , in the norm of Us, for every f ∈ Us? More formally, we may ask

Question 1. Is it possible to find a family {ZN }N∈N of discrete sampling sets ZN ⊂ T and a
method to determine approximations cN ,n( f ) of the Fourier coefficients cn( f ) from the samples
{ f (τ ) : τ ∈ ZN } such that the operators defined in (4) satisfy

lim
N→∞

 f − S̃N ( f )

Us

= 0 for all f ∈ Us ?

Approximating f by the series (4) might even be too specific. So we may ask the more
general question.

Question 2. Is it possible to find a family {ZN }N∈N of discrete sampling sets ZN ⊂ T and a
family {AN }N∈N of approximation operators AN : Us → Us

AN : { f (τ ) : τ ∈ ZN } ↦→ f̃N

such that

lim
N→∞

 f − f̃N

Us

= lim
N→∞

 f − AN ( f )

Us

= 0 for all f ∈ Us ?

Clearly, the approximation method (4) in Question 1, is just a special case of the more
general setting in Question 2. Already at this point, we want to emphasize that Questions 1
and 2 make no assumption on the linearity of the approximation methods which determine the
approximate Fourier coefficients cN ,n( f ) or on the linearity of the approximation operators AN ,
respectively. In both cases, these approximation operations might be non-linear.

This paper is going to show that both questions have a negative answer. So on the space Us
of all uniformly convergent Fourier series, there exists no method which is able to approximate
every f ∈ Us arbitrarily well from discrete samples of f . In particular, it follows that there
exists no method to determine an approximate Fourier series (4) which converges for every
f ∈ Us.

The main restriction on the approximation methods, considered in this paper, is the
assumption that only finitely many samples of the given function f can be processed. This is
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a necessary condition for any algorithm which should be implemented on a digital computer.
Otherwise, an infinitely large memory and infinite processing time would be needed to calculate
the result. So the statements of this paper will show that there exists no numerical method
which is able to determine the Fourier approximation for all functions in Us. This statement
can be made even more descriptive by formulating it in the framework of Turing computable
functions [1,30,31], which will be done at the end of this paper. So even although Us is, by
construction, the space on which the Fourier series converges uniformly, it is a poor space for
actually calculating Fourier series approximations of functions from Us in the above sense.

The outline of this paper is as follows. Section 2 introduces our notations and gives some
basic definitions. In particular, the space Us of all uniformly convergent symmetric Fourier
series will be introduced. To obtain more general results, Section 2 introduces also the space U
of uniformly convergent non-symmetric Fourier series

(
SN ,M f

)
(t) =

∑N
n=−M cn( f ) eint , where

N , M ∈ N0 are arbitrary and not necessarily equal, and discusses some of its properties and its
relation to Us. Then Section 3 states our main results. To this end, an axiomatic characterization
of general sampling-based approximation methods {AN }N∈N on Us and U is introduced. Then
it is proved that no such approximation method exists on Us and U . As a particular case,
the sampling-based Fourier series approximation on Us and U is discussed in some detail in
Section 4 whereas Section 5 will demonstrate that there exist no computational bases in Us and
U . Finally, Section 6 shows that there exist no Turing computable approximation methods in
Us and U . The proofs of our main results are given in Section 8. Before that some auxiliary
results, necessary for the poofs in Section 8, are given in Section 7.

2. Notation, basic definitions and properties

The first subsection introduces our notation whereas the second subsection defines the signal
spaces U and Us on which the approximation operators are investigated in later sections.

2.1. General notation

Throughout this paper, T = R/2πZ stands for the additive quotient group of real numbers
modulo 2π . Then C(T) is the Banach space of continuous function on T equipped with the
maximum norm ∥ f ∥∞ = maxt∈T | f (t)|. The subset of all trigonometric polynomial is denoted
by P , i.e. the set of all f (t) =

∑N
n=−M cn eint with non-negative integers N , M ∈ N0 = N∪{0}

and with coefficients cn ∈ C. The degree of f ∈ P , denoted by deg( f ), is the maximum of N
and M . To simplify notation, we often write

en(t) = eint , n ∈ Z (5)

for the monomials in P . For any a ∈ T, the translation operator Ta : C(T) → C(T) is defined
by (

Ta f
)
(t) = f (t − a) , t ∈ T . (6)

It is well known that every f ∈ C(T) is uniquely determined by the set {cn( f )}n∈Z of its Fourier
coefficients (2). Then the non-symmetric partial Fourier series SN ,M : C(T) → P is defined
for arbitrary N , M ∈ N0 by(

SN ,M f
)
(t) =

∑N
n=−M cn( f ) eint , t ∈ T . (7)
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We simply write SN for SN ,N , thus SN f is the usual (symmetric) partial Fourier series (3) of
f . Inserting the Fourier coefficients (2) into (7), one obtains the integral representation of SN ,M(

SN ,M f
)
(t) =

1
2π

∫ π

−π

f (τ )DN ,M (t − τ ) dτ with

DN ,M (τ ) =
ei
(

N+
1
2

)
t
− ei

(
M+

1
2

)
t

2i sin(τ/2)
,

(8)

and we notice that SN ,M commutes with the translation operator Ta for every a ∈ R, i.e.

SN ,M Ta = TaSN ,M for all N , M ∈ N0 . (9)

We frequently need the notation of an open ball

Bδ( f0,B) =
{

f ∈ B : ∥ f − f0∥B < δ
}

. (10)

in a Banach space B with center f0 ∈ B and radius δ > 0. Finally, we recall that a subset N of
a topological space B is said to be nowhere dense in B if its closure contains no nonempty open
set of B. N is said to be meager (of first category) if it is the countable union of nowhere dense
sets, and it is said to be nonmeager (of second category) if it is not meager. The complement of
a meager set in a complete metric space is called a residual set and Baire’s theorem implies that
any residual set is nonmeager and dense. Conversely, any open and dense subset is a residual
set.

2.2. The spaces U and Us of uniformly convergent fourier series

It is well known that the symmetric and non-symmetric Fourier series SN f and SN ,M f ,
respectively, converges to f in several Banach spaces of functions on T, e.g. in L2(T) or in
the Wiener algebra W . Nevertheless, the series SN ,M f and SN f do usually not converge to
f ∈ C(T) as N , M → ∞ in the uniform norm of C(T). For this reason, we introduce U and Us
as the largest subset of C(T) for which SN ,M f and SN f converge uniformly to f , respectively.
The precise definition of these spaces is given next.

Definition 2.1. We write U for the set of all f ∈ C(T) for which

∥ f ∥U := sup
N ,M∈N0

SN ,M f


∞
< +∞ , (11)

and we write Us for the set of all f ∈ C(T) for which

∥ f ∥Us := sup
N∈N0

∥SN f ∥∞ < +∞ . (12)

Moreover, U ⊂ U and Us ⊂ Us stand for the closed linear span of the polynomials P with
respect to the norm ∥·∥U and ∥·∥Us , respectively, i.e.

U := span { f ∈ P}
∥·∥U and Us := span { f ∈ P}

∥·∥Us . (13)

Definition 2.1 introduces two pairs of Banach spaces U , Us and U , Us. Even though we
primarily work with U , Us, some properties of all four spaces and their relation to each other
are shortly discussed. In particular, we emphasize the fundamental difference between U and
Us on the one hand and U and Us on the other hand, and we give a motivation for introducing
of U and Us. Especially Corollary 2.5 and Lemma 2.6 will show again that U and Us are very
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well suited for applications in signal processing which rely on Fourier series techniques. The
spaces U and Us and their properties were already discussed elsewhere [3–5]. Nevertheless, for
completeness and to being self-contained, the proofs of the following statements are given in
the Appendix.

First, we notice that U and Us, equipped with the norm (11) and (12), respectively, are
Banach spaces which are continuously embedded in C(T).

Theorem 2.2. The sets U and Us, introduced in Definition 2.1 and equipped with the norm
(11) and (12), respectively, have the following properties

1. U and Us are continuously embedded in C(T) with

∥ f ∥∞ ≤ ∥ f ∥Us ≤ ∥ f ∥U for all f ∈ U . (14)

2. U and Us are Banach spaces.

Remark 2.1. The first statement implies obviously Us ⊂ U and ∥ f ∥∞ ≤ ∥ f ∥Us for all f ∈ Us.

The space U is defined so that the partial Fourier series SN ,M f is uniformly bounded for
every f ∈ U . Similarly, Us is the set of all f ∈ C(T) for which the symmetric Fourier series
SN f is uniformly bounded. Nevertheless, these properties do not imply that SN ,M f and SN f
converge to f for every f ∈ U and f ∈ Us, respectively. This observation follows from the
following lemma.

Lemma 2.3. There exists an f ∈ Us such that

lim inf
N→∞

∥SN f ∥∞ < lim sup
N→∞

∥SN f ∥∞ < +∞ ,

and there exists an f ∈ U such that

lim inf
N ,M→∞

SN ,M f


∞
< lim sup

N ,M→∞

SN ,M f


∞
< +∞ .

The statement of Lemma 2.3, that SN ,M f and SN f do not converge uniformly for all f ∈ U
and f ∈ Us, respectively, is the reason for introducing U and Us. In these spaces, SN ,M f and
SN f converge in norm and uniformly for every f ∈ U and every f ∈ Us, respectively.

Theorem 2.4. The spaces U and Us, given in Definition 2.1, are Banach spaces and it holds

(1) lim
N→∞

∥ f − SN f ∥Us = 0 for all f ∈ Us (15)

(2) lim
N ,M→∞

 f − SN ,M f

U = 0 for all f ∈ U

(3) Us =

{
f ∈ Us : lim

N→∞

∥ f − SN f ∥∞ = 0
}
⊊ Us

(4) U =

{
f ∈ U : lim

M,N→∞

 f − SM,N f


∞
= 0

}
⊊ U .

So U and Us and are closed subspaces of U and Us containing all f ∈ C(T) with a uniformly
convergent Fourier series. In this respect U and Us are the largest spaces of continuous func-
tions for which the non-symmetric and the symmetric Fourier series, respectively, converges
uniformly.
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The first statement of Theorem 2.4 is based on the fact that ∥SN ∥Us→Us = 1 for all N ∈ N
(cf. the proof of Theorem 2.4 in Appendix A.2). This uniform boundedness of the operator
norms implies also that the monomials (5) form a basis for Us, provided they are ordered
appropriately.

Corollary 2.5. The sequence ẽ = {e0, e1, e−1, e2, e−2, e3, . . .} forms a Schauder basis for Us.

It is obvious from Definition 2.1 that U ⊂ Us and since the polynomials are dense in U , the
space Us may be considered as the closure of U with respect to Us-norm, i.e. Us = U∥·∥Us . On
the other side, there exist functions f∗ ∈ Us which do not belong to U , i.e. for which

lim sup
N ,M→∞

SN ,M f∗


∞
= +∞ . (16)

To see this, we define for any K ∈ N the trigonometric polynomial

fK (t) = C0

K∑
k=1

sin(kt)
k

=
C0

2i

K∑
k=−K

k ̸=0

1
k

eikt , t ∈ T ,

wherein C0 > 0 is a constant, independent of K , which can be chosen such that ∥ fK ∥∞ ≤ 1
for all K ∈ N (cf. [35, Chapter II.9]). Then it is clear from the definition that SN fK = fN for
all N ≤ K and that SN fK = fK for all N > K . So ∥ fK ∥Us = supN∈N ∥SN fK ∥∞ ≤ 1 showing
that fK ∈ Us for all K ∈ N. Nevertheless, for the non-symmetric Fourier series of fK , one
obtains

sup
N ,M∈N

SN ,M fK


∞
≥
SK ,0 fK


∞

≥
⏐⏐(SK ,0 fK

)
(0)
⏐⏐ =

C0
2

∑K
k=1

1
k ≥

C0
2 log(K + 1)

showing that the norms of the operators SN ,M : Us → C(T)SN ,M

Us→C(T) = sup

f ∈Us, ∥ f ∥Us ≤1

SN ,M f


∞
≥
SN ,M fK


∞

≥
C0
2

∑K
k=1

1
k

are not uniformly bounded. Then the uniform boundedness principle implies that there exists
an f∗ ∈ Us for which (16) holds.

Let S be a subspace of C(T). We say that S is shift-invariant if f ∈ S implies that
Ta f = f (·−a) ∈ S for every a ∈ T. Such spaces play an important role in practical application
because there the question whether f belongs to a certain signal space S should often not
depend on a shift of the signal. If in such a shift-invariant subspace S, the Fourier series
converges at least at one point t0 ∈ T, it converges on all points in T and S is continuously
embedded in Us.

Lemma 2.6. Let S ⊂ C(T) be a shift-invariant Banach space of continuous functions on T
such that limN→∞ (SN f ) (t0) = f (t0) for some t0 ∈ T and for all f ∈ S . Then there exists a
constant C(S) such that ∥ f ∥Us ≤ C(S) ∥ f ∥S for all f ∈ S.

Remark 2.2. It is easy to see that a similar statement holds for U and shift-invariant subspaces
S in which limN ,M→∞

(
SN ,M f

)
(t0) = f (t0) for some t0 ∈ T and all f ∈ S.

Corollary 2.5 and Lemma 2.6 show again that Us and U are very natural spaces for typical
applications in signal processing which are often based on Fourier series techniques and in
which the monomials (5) are used as a natural basis.
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3. General approximations in U and Us

We are going to investigate Question 2 from the introduction, namely the problem of
approximating functions f in U and Us based on finitely many samples of f . To this end,
we consider sequences A = {AN }N∈N of approximation operators on U or Us which should
have the property that AN ( f ) converges to f in the norm of U and Us for all f ∈ U and
f ∈ Us, respectively. One basic requirement on these operators is the assumption that they are
lower semicontinuous.

Definition 3.1 (Lower Semicontinuous Operators). Let A : B1 → B2 be a mapping from a
Banach space B1 into a Banach space B2. We say that A is lower semicontinuous if for every
λ ≥ 0 the set

{
f ∈ B1 : ∥A( f )∥B2

≤ λ
}

is closed.

Apart from this lower semicontinuous property, we require that the sequences A = {AN }N∈N
of approximation operators satisfy two very simple and natural properties, namely

(A) Each AN should be concentrated on a finite sampling set, so that the calculation of
(AN f ) (t) can be implemented on a digital computer.

(B) AN ( f ) should converge to f at least for all f from a dense subset of the function space
U or Us. This is a very basic necessary requirement for any approximation method A
which is expected to converge for all f in U or Us.

All of our requirements on the sequence A of approximation operators are formalized by
the following definition.

Definition 3.2 (Sampling-based Approximation Method). Let B be a Banach space of
continuous functions on T and let A = {AN }N∈N be a sequence of lower semicontinuous
operators AN : B → B. We say that A is a sampling-based approximation method for B, if
its satisfies the following two properties:

(A) To every N ∈ N there exists a finite set ZN ⊂ T of cardinality |ZN | = Z N ∈ N such
that for arbitrary f1, f2 ∈ B

f1(τ ) = f2(τ ) for all τ ∈ ZN

implies [AN ( f1)] (t) = [AN ( f2)] (t) for all t ∈ T .

(B) There exists a dense subset M ⊂ B such that

lim
N→∞

∥ f − AN ( f )∥B = 0 for all f ∈ M .

Remark 3.1. Definition 3.2 is formulated for general Banach spaces B of continuous functions
on T. Nevertheless, this paper considers solely the two particular cases B = U and B = Us.

Remark 3.2. An operator AN : B → B which satisfies (A) is said to be concentrated ZN .

Remark 3.3. It is emphasized that we do not require that the operators AN : B → B are
linear. Also the dense subset M, appearing in Property (B), is not assumed to have any linear
structure.

The two properties of Definition 3.2 imply no serious restriction on the approximation
methods A. They only require that the calculation of AN ( f ) is based on finitely many samples



H. Boche and V. Pohl / Journal of Approximation Theory 249 (2020) 105307 9

of f . This is a necessary condition for implementing such a method on a digital computer.
Secondly, they require that the algorithm converges at least for a dense subset M of B. This
is a very weak necessary condition for A to be able to approximate every function in B.

Despite these weak assumptions on the approximation methods, one obtains that on U and
Us there exists no approximation method A satisfying the requirements of Definition 3.2 and
which converges for all f in U or Us.

Theorem 3.3. Let B be either U or Us and let A = {AN }N∈N be an arbitrary sampling-based
approximation method for B according to Definition 3.2. Then

R(A) =

{
f ∈ B : lim sup

N→∞

∥AN ( f )∥B = +∞

}
is a residual set in B.

So to any approximation method A satisfying the conditions of Definition 3.2 there exists
a dense and nonmeager subset R(A) ⊂ B such that

lim sup
N→∞

∥ f − AN ( f )∥B = +∞ for all f ∈ R(A) .

To prove Theorem 3.3 some preliminary results are necessary which will be presented and
proved in Section 7. The proof of Theorem 3.3 is then given in Section 8. Next, the following
three sections will discuss some consequences and applications of Theorem 3.3.

4. Application 1: Sampling-based fourier approximations in U and Us

Section 3 considered general sampling-based methods to approximate functions in U and Us
from finitely many samples of the given function. To illustrate this result, this section studies
a particular example of such approximation methods, namely the approximation of f by its
truncated symmetric Fourier series SN f . Thus, we consider Question 1 from the introduction.

As in the previous section, B stands always for either U or Us. According to Theorem 2.4, the
symmetric Fourier series SN f converges to f for every f ∈ B, uniformly on T and in the norm
of B. So it seems to be natural to approximate f ∈ B by the partial sum SN f . But to calculate
(3), the exact Fourier coefficients {cn( f )}N

n=−N are needed. However, since these coefficients are
given by an integral (2) over f , it is clear that cn( f ) can generally only be determined exactly
if f (t) is known at almost all points t ∈ T. Nevertheless, on a digital computer only finitely
many values of f (t) can be processed. So in practice, one will replace the exact coefficients
cn( f ) by some “good approximation” cN ,n( f ) of cn( f ) obtained via a numerical integration in
(2), based on finitely many known samples { f (τn)}Z (N )

n=1 of f . So instead of (3), one determines
for N = 0, 1, 2, . . . the approximations

f̃N (t) =
[
EN ( f )

]
(t) =

∑N
n=−N cN ,n( f ) eint , t ∈ T , (17)

with certain approximations cN ,n( f ) of the exact Fourier coefficients (2). Then, we say that the
sequence E = {EN }N∈N of operators EN : B → B is an effective approximation method for B
if

lim
N→∞

 f − f̃N

B = lim

N→∞

 f − EN ( f )

B = 0 for all f ∈ B .

We ask whether it is possible to find an effective approximation method for B = U
or B = Us and how we have to calculate the approximate Fourier coefficients cN ,n( f )
such that the corresponding sequence E becomes effective. To formalize our approach, we
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characterize again the approximation methods by two simple properties. In the present situation
our approximation methods EN have already slightly more structure than in the general case,
discussed in Section 3.

Definition 4.1 (Sampling-based Fourier Approximation). Let B stand for U or Us and let
E = {EN }N∈N be a sequence of operators EN : B → B of the form (17) with continuous
functionals cN ,n : B → C. We say that E is a sampling-based Fourier approximation, if it
satisfies the following two properties:

(a) To every pair (N , n) ∈ N× [−N , . . . ,−1, 0, 1 . . . , N ] there exists a finite set ZN ,n ⊂ T
such that for all f1, f2 ∈ B

f1(τ ) = f2(τ ) for all τ ∈ ZN ,n implies cN ,n( f1) = cN ,n( f2) .

(b) The functionals cN ,n : B → C satisfy for every n ∈ Z

lim
N→∞

cN ,n( f ) = cn( f ) for all f ∈ B .

Property (a) requires that the approximate Fourier coefficients cN ,n( f ) are uniquely determined
by the values of f on a finite sampling set ZN ,n . If two functions f1 and f2 coincide on this
sampling set then the corresponding approximate Fourier coefficients cN ,n( f1) and cN ,n( f2)
have to be equal. Property (b) requires that for every n ∈ Z the number cN ,n( f ) is a good
approximation of the true Fourier coefficient cn( f ) in the sense that cN ,n( f ) converges to cn( f )
as N goes to infinity. The intuition behind this assumption is that the cardinality

⏐⏐ZN ,n
⏐⏐ of the

sampling sets increases as N increases. So to satisfy Property (b), one has to choose a proper
numerical integration method for the determination of cN ,n( f ) which converges to cn( f ) if the
number of sampling points goes to infinity. Such a method is easy to find because the integrand
in (2) is a continuous function.

If E = {EN }N∈N is a sampling-based Fourier approximation with Properties (a) and (b)
then the calculation of EN ( f ) is based on the values of f on the finite sampling set ZN =⋃N

n=−N ZN ,n . In many concrete situations (cf. Example 1 below), one will choose the sampling
sets ZN ,n to be equal for all n = 0, ±1, ±2, . . . ,±N . Nevertheless, our approach allows
for the general situation where all sampling sets might be different. We emphasis also that
the sampling sets

{
ZN ,n

}N
n=−N can be completely different for different N , i.e. we do not

require that ZN ,n ⊂ ZN+k,n for any k ∈ N. To illustrate the approximation sequences {EN }N∈N
characterized by Definition 4.1, we give a concrete and simple example.

Example 1. For each N ∈ N, choose the sampling sets

ZN ,n =

{
tN ,k = (k − N )

π

N
: k = 0, 1, 2, . . . , 2N − 1

}
for every n = 0, ±1, ±2, . . . ,±N .

Then we approximate the integral in (2) by its Riemann sum with nodes ZN ,n

cN ,n( f ) =
π

N
1

2π

2N−1∑
k=0

f (tN ,k) en(tN ,k) =
1

2N

2N−1∑
k=0

f ([k − N ] π
N ) e−i π

N n(k−N ) ,

and consider the operators EN ( f ) =
∑N

n=−N cN ,n( f ) eint . It is clear that the so defined
functionals cN ,n : B → C have Property (a) and that they are continuous. Moreover, by well
known properties of the Riemann integral, they also satisfy Property (b).
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Even though the functionals cN ,n : B → C in the previous example were linear, we
emphasis that the two properties of Definition 4.1 do not require that any cN ,n is linear. So
these functionals and in turn the operators EN : B → B can be non-linear, in general.

Similarly as in Section 3, one can show now that every sampling-based Fourier approx-
imation satisfying Properties (a) and (b) of Definition 4.1 diverges on the spaces U and
Us.

Theorem 4.2. Let B stand for U or Us and let E = {EN }N∈N be a sampling-based Fourier
approximation with operators EN : B → B of the form (17) and having Properties (a) and (b)
of Definition 4.1. Then

R(E) =

{
f ∈ B : lim sup

N→∞

∥EN ( f )∥B = +∞

}
is a residual set in B.

This theorem is an immediate consequence of Theorem 3.3 since every sampling-based
basis expansion E, as defined in Definition 4.1, satisfies also the conditions of Definition 3.2.
Nevertheless, a detailed verification of this statement is given in Section 8.

5. Application 2: Computational bases in U or Us

As before, B stands always for either U or Us. Let {ϕn}
∞

n=1 be a basis for B. Then to every
f ∈ B there exists a unique sequence {an( f )}n∈N ⊂ C such that f =

∑
n∈N an( f ) ϕn and

where the sum converges in the norm of B. Similarly as in the previous section, we may try
to approximate f by the partial sum

ΦN f =
∑N

n=1 an( f ) ϕn . (18)

Since {ϕn}
∞

n=1 is a basis, ΦN f converges to f as N → ∞. Nevertheless, working on a digital
computer, it might not be possible to determine the coefficients an( f ) in (18) exactly from
only finitely many samples of f . Then, similar as in Section 4, one has to replace the exact
coefficients an( f ) by certain approximations aN ,n( f ) which yields approximation operators of
the form

EN ( f ) =
∑N

n=1 aN ,n( f ) ϕn , N ∈ N .

By the same arguments as in Section 4, it follows that there exists a residual set R ⊂ B such
that

lim sup
N→∞

∥EN ( f )∥B = +∞ for all f ∈ R ,

irrespectively of how the approximations aN ,n( f ) of the true coefficients an( f ) are chosen.
However, it is known that there exist Banach spaces which posses a basis {ϕn}n∈N such

that each of the corresponding coefficient functionals {an( f )} is uniquely determined by only
finitely many samples of f . Such bases are said to be computable.

Definition 5.1 (Computational Basis). Let B be a separable Banach space of continuous
functions on T. A basis ϕ = {ϕn}n∈N of B is said to be computational if the corresponding
coefficient functionals {an( f )}n∈N of ϕ have the following property: To every n ∈ Z there exist
an K = K (n) ∈ N and distinct numbers τ1,n, . . . , τK ,n ∈ T such that the value an( f ) does only
depend on the values f (τk,n), 1 ≤ k ≤ K (n) for every f ∈ B.
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Remark 5.1. In other words, ϕ is a computational basis if and only if for all functions f, g ∈ B
with f1(τk,n) = f2(τk,n) for all k = 1, . . . , K (n) one has an( f1) = an( f2) for all n = 1, 2, 3, . . . .

If ϕ is a computational basis then to every n ∈ Z there exists a finite sampling set Zn ={
τ1,n, . . . , τK (n),n

}
⊂ T which allows to calculate an( f ) exactly based on the values { f (τ )}τ∈Zn .

So a computational basis allows to determine the partial sum operators ΦN : B → B in (18)
exactly for all f ∈ B from only finitely many samples of f . For a large number of Banach
spaces of continuous functions on T, computational bases are known [27]. One example is the
spline basis for C(T). Nevertheless, Theorem 3.3 implies the following statement.

Corollary 5.2. The two spaces U and Us do not posses a computational basis.

This corollary follows from the observation that the partial sum operators (18) associ-
ated with any computational basis {ϕn}n∈N satisfies the properties of Definition 3.2. Then
Corollary 5.2 follows form Theorem 3.3 in a similar way as Theorem 4.2 follows from
Theorem 3.3.

6. Application 3: Approximations by turing computable functions

Theorem 3.3 showed that there exists no sampling-based method which is able to determine
an approximation for all f in U or Us. This section is going to translate this statement into
the language of Turing computability. Generally speaking, a method or a function is said to be
computable if there exists an algorithm on an abstract machine which can emulate the method
or function. Thus, given a (countable) sequence of input symbols, the machine will be able
to return the corresponding output symbols as prescribed by the given method or function.
The concrete notion of computability is characterized by the model of the abstract machine
on which the corresponding algorithm is assumed to be executed. In this paper, we consider
only the model of a so called Turing machine. This particular computational model describes
a natural limit on algorithms which can be implemented on digital computers [1,30,31].

Before we can reformulate our main result in terms of Turing computable functions, we have
to relate the approximation operators AN to certain functions which can then be analyzed using
the notion of Turing computability. These functions are introduced in the following definition
and related to our approximation sequence A by the subsequent lemma.

Definition 6.1. Let Z ∈ N be arbitrary and let B be a separable Banach space of continuous
functions on T. Then we write T (Z ,B) for the set of all functions F : RZ

×T → R satisfying

1. F(x; ·) ∈ B for every x ∈ RZ .
2. the mapping F : RZ

→ B, given by F : x ↦→ F(x; ·), is lower semicontinuous.

Remark 6.1. As before and as in the remainder of this section, the Banach space B, appearing
in this definition, will always be either U or Us.

Now we consider again approximation methods A = {AN }N∈N described by Definition 3.2.
The following lemma shows that every A, satisfying the first property of Definition 3.2, can
be associated with a sequence {FN }N∈N of functions FN = T (Z N ,B), wherein Z N = |ZN |

denotes the cardinality of the sampling set ZN on which AN is concentrated.
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Lemma 6.2. Let B stand for either U or Us. A sequence A = {AN }N∈N of lower semicontinuous
mappings on B has Property (A) of Definition 3.2 if and only if to every N ∈ N there exist
a finite set ZN =

{
τ1, τ2, . . . , τZ N

}
⊂ T and a function FN ∈ T (Z N ,B) such that for every

f ∈ B[
AN ( f )

]
(t) = FN

(
f (τ1), f (τ2), . . . , f (τZ N ) ; t

)
for all t ∈ T .

Proof. Let N ∈ N be arbitrary and let ZN =
{
τ1, τ2, . . . , τZ N

}
⊂ T be an arbitrary sampling set

of cardinality Z N . Assume FN ∈ T (Z N ,B) is a function according to Definition 6.1. Therewith,
we define the mapping AN : B → B by

[AN ( f )] (t) = FN
(

f (τ1), f (τ2), . . . , f (τZ N ) ; t
)

, t ∈ T .

It is obvious that AN satisfies Property (A) of Definition 3.2. Moreover, since FN : x ↦→

FN (x; ·) is lower semicontinuous, it follows, using (14), that also the corresponding AN : B →

B is lower semicontinuous.
Conversely, assume A = {AN }N∈N is a sequence of lower semicontinuous mappings with

Property (A), and let ZN =
{
τ1, τ2, . . . , τZ N

}
⊂ T be the associated sampling sets. Fix an

arbitrary N ∈ N. Because A satisfies Property (A), i.e. because AN is concentrated on the
sampling set ZN , the function AN f ∈ B depends only on the values { f (τn)}Z N

n=1 ∈ RZ N . Let
x = (x1, . . . , xZ N )T

∈ RZ N be arbitrary. Then there always exists an gx ∈ C(T) such that

gx(τn) = xn for all n = 1, 2, . . . , Z N ,

and such that ∥gx∥∞ = ∥x∥∞ = maxn∈[1,...,Z N ] |xn|. Applying Lemma 7.1, one can always find
an fx ∈ B with ∥ fx∥B ≤ 2 ∥gx∥∞ = 2 ∥x∥∞ and such that

fN (τn) = gN (τn) = xn for all n = 1, 2, . . . , Z N .

Finally, we define the function FN : RZ N × T by FN (x; t) := [AN ( fx)] (t) for t ∈ T. Since
AN : B → B, it is clear that FN (x; ·) ∈ B for every arbitrary x ∈ RZ N . Moreover, since
AN is assumed to be lower semicontinuous, it follows easily that the corresponding mapping
FN : RZ N → B, given by FN : x ↦→ FN (x; ·) = AN ( fx) is lower semicontinuous, showing
that FN ∈ T (Z N ,B). ■

So every approximation operator AN is associated with a function FN in the class T (Z N ,B).
This allows us to apply techniques from computability theory to analyze the computability of
approximation methods having the Properties (A) and (B) of Definition 3.2. This is necessary,
because to compute the values of [AN ( f )] (t) = FN ( f (τ1), . . . , f (τZ N ); t), t ∈ T on a
computer, the function FN has to satisfy some reasonable computability conditions. Here,
we only discuss so called Turing computable functions, and we shortly review the necessary
definitions.

Definition 6.3 (Computable Vectors). Let x ∈ RM be an M-dimensional real vector.

1. A sequence {xn}n∈N ⊂ QM of rational vectors is said to be a rapidly converging Cauchy
name of x, if xn converges rapidly to x in the following sense: For all n, m ∈ N with
m > n, one has ∥xm − xn∥RM ≤ 2−n .

2. A vector x ∈ RM is said to be computable, if there exists a rapidly converging Cauchy
name of x.
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Definition 6.4 (Computable Function). We call F : RM
→ R a computable function if there

is an algorithm that transforms each rapidly converging Cauchy name of an arbitrary x ∈ RM

into a rapidly converging Cauchy name of F(x).

Remark 6.2. Following usual conventions, the notion “algorithm” in Definition 6.4 means
that there exists a Turing machine which determines the corresponding mapping.

Remark 6.3. In his early works Turing introduced the notion of computable numbers in
R [30,31]. These numbers have to be approximable by rational numbers using a Turing
machine. Since the number of Turing machines is countable also the number of computable
numbers is countable. Later, Turing introduced machines with an oracle [32]. By considering
the inputs as given by an oracle from outside and not being itself calculated on a Turing
machine, these machines can handle functions with arbitrary real inputs (see, e.g., [1] for
further discussions). This paper considers only approximation methods computable on Turing
machines with oracle. So here “Turing computable” always means “computable on a Turing
machine with oracle”.

Definition 6.5 (Turing Computable Approximation Method). Let B stand for U or Us. A
sequence A = {AN }N∈N of mappings B → B is said to be a Turing computable approximation
method on B if to every N ∈ N there exist an Z N ∈ N, a finite sampling set ZN ={
τN ,1, τN ,2, . . . , τN ,Z N

}
⊂ T, and a computable function FN ∈ T (Z N ,B) so that for every

f ∈ B[
AN ( f )

]
(t) = FN

(
f (tN ,1), f (tN ,2), . . . , f (tN ,Z N ) ; t

)
for all t ∈ T . (19)

Remark 6.4. Definition 6.5 is basically a reformulation of Property (A) of Definition 3.2 in the
context of Turing computability where the lower-semicontinuity of the operators AN follows
from the fact that each computable function FN is continuous [33].

After these preparations, we can recast Theorem 3.3 in the framework of Turing computabil-
ity.

Theorem 6.6. Let B stand for U or Us, and let A = {AN }N∈N be a Turing computable
approximation method on B such that there exists a dense subset M ⊂ B so that

lim
N→∞

 f − AN ( f )

B = 0 for all f ∈ M . (20)

Then {
f ∈ B : lim sup

N→∞

∥AN ( f )∥B = +∞

}
(21)

is a residual set in B.

Remark 6.5. Condition (20) is equivalent to Property (B) in Definition 3.2 and requires that
the method A converges to the desired function f at least for all f from a dense subset of B.

Proof. The sequence A = {AN }N∈N is a Turing computable approximation method on B.
So to every N ∈ N there exists a sampling set ZN ⊂ T of cardinality Z N = |ZN | and an
FN ∈ T (Z N ,B) such that (19) holds for every f ∈ B. Moreover, every Turing computable
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function is continuous [33] and so Lemma 6.2 implies that A has Property (A) of Defini-
tion 3.2. Furthermore, Requirement (20) implies that A has Property (B) of Definition 3.2. So
Theorem 3.3 is applicable, showing that (21) is a residual set in B. ■

According to Theorem 6.6, there exists no method A = {AN }N∈N which can be implemented
on an abstract Turing machine and which is able to calculate arbitrary values f (t), t ∈ T for
all functions f from the spaces U or Us. In particular, it is impossible to calculate a partial
Fourier series (3) or (7) on a Turing machine for all f ∈ Us or f ∈ U , respectively.

7. Auxiliary results

This section presents two auxiliary results needed to prove Theorem 3.3 in Section 8.
Nevertheless, both results may be of some interest by themselves. Again, B stands always
for U or Us.

7.1. Interpolating continuous functions by functions in U and Us

The following interpolation lemma will be of fundamental importance for the proof of
our main results. Let AN : B → B be an arbitrary sampling-based approximation operator
concentrated on a finite sampling set ZN , and let { f (τn) : τn ∈ ZN } be the samples of f ∈ B on
which the calculation of AN ( f ) is based. Then the following interpolation lemma will show that
the operator AN cannot decide from the given samples { f (τn) : τn ∈ ZN } whether f belongs
to B or C(T), because to every f ∈ C(T) there exists a function g ∈ B which coincides
with f on the sampling set ZN . Then, in connection with Property (B) of Definition 3.2,
every approximation method which shows a bad convergence behavior on C(T) will show a
similar bad convergence behavior on the subset B ⊂ C(T). Exactly in this way, the following
approximation lemma will be applied in the proof of Theorem 3.3.

Lemma 7.1 (Interpolation Lemma). Let Z ⊂ T be an arbitrary discrete subset of T. To every
f ∈ C(T) there exists an f1 ∈ U with ∥ f1∥U ≤ 2 ∥ f ∥∞ and such that f1(τ ) = f (τ ) for all
τ ∈ Z .

Remark 7.1. Since U ⊂ Us and ∥ f1∥Us ≤ ∥ f1∥U one has also f1 ∈ Us with ∥ f1∥Us ≤ 2 ∥ f ∥∞.

Remark 7.2. A similar interpolation lemma was used in [2] but for a different Banach space.

Proof. (1) For δ ∈ (0, 1), we consider the function ∆δ ∈ C(T) defined by ∆δ(t) =

max
(

0, 1 −
|t |
δ

)
for t ∈ T, and which can be written as a Fourier series

∆δ(t) =
∑

∞

n=−∞
cn(∆δ) eint with c0(∆δ) =

δ
2π

and

cn(∆δ) =
[1−cos(nδ)]

δ π n2 , n ≥ 1 .
(22)

All Fourier coefficients cn(∆δ) are non-negative, so ∆δ(0) =
∑

∞

n=0 cn(∆δ) = ∥c∥ℓ1 =

∥∆δ∥W = 1, showing that (22) converges absolutely and satisfies

∥∆δ∥U = sup
N ,M∈N0

SN ,M∆δ


∞

≤ ∥∆δ∥W = 1 (23)

using that
SN ,M∆δ


∞

=

∑N
n=−M cn(∆δ) en


∞

≤
∑N

n=−M cn(∆δ) ≤ ∥∆δ∥W for all N , M ∈

N0, and where ∥∆δ∥W stands for the usual norm of ∆δ in the Wiener algebra W .
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(2) Next, we show that for every µ ∈ (0, 1) and every ϵ > 0 there exists a δ0 = δ0(µ, ϵ)
with 0 < δ0 < µ such that for every δ ∈ (0, δ0) and for all N , M ∈ N0⏐⏐(SN ,M∆δ

)
(t)
⏐⏐ < ϵ for all t ∈ T\[−µ, µ] .

Indeed, using the integral representation (8) of SN ,M , we obtain for all δ ∈ (0, 1) and all t ∈ T⏐⏐(SN ,M∆δ

)
(t)
⏐⏐ ≤

1
2π

∫ δ

−δ

|∆δ(τ )|
⏐⏐DN ,M (t − τ )

⏐⏐ dτ ≤
1

2π

∫ δ

−δ

1
|sin([t − τ ]/2)|

dτ ,

because ∥∆δ∥∞ ≤ 1. Then, choosing an arbitrary µ satisfying 1 > µ > δ, one obtains⏐⏐(SN ,M∆δ

)
(t)
⏐⏐ ≤

δ

π

1
|sin([µ − δ]/2)|

for all t ∈ T\[−µ, µ] .

So to every ϵ > 0, we can choose δ ∈ (0, µ) so that
⏐⏐(SN ,M∆δ

)
(t)
⏐⏐ < ϵ for all t ∈ T\[−µ, µ].

(3) Let Z = {τn}
Z
n=1 ⊂ T be an arbitrary sampling set of cardinality Z . Then we set

ρ = min
{
|τn − τm | : τn, τm ∈ Z with n ̸= m

}
and µ = ρ/3 .

Using the previous step of this proof, we choose δ < µ such that for all N , M ∈ N0 always⏐⏐(SN ,M∆δ

)
(t)
⏐⏐ ≤

1
Z for all t ∈ T\[−µ, µ] . (24)

(4) Let f ∈ C(T) be arbitrary. With f we associate the function

fδ(t) =
∑Z

n=1 f (τn)∆δ(t − τn) =
∑Z

n=1 f (τn)
(
Tτn∆δ

)
(t) (25)

with δ as chosen in the previous step and where Tτn stands for the translation operators (6).
Then we fix arbitrary numbers N , M ∈ N0 and apply SN ,M to fδ . Using (9), this yield(

SN ,M fδ
)
(t) =

∑Z
n=1 f (τn)

(
SN ,M Tτn∆δ

)
(t) =

∑Z
n=1 f (τn)

(
Tτn SN ,M∆δ

)
(t)

=
∑Z

n=1 f (τn)
(
SN ,M∆δ

)
(t − τn) . (26)

(5) Now we fix an arbitrary t ∈ T. By the definition of ρ and µ, there exists at most one
index n̂ ∈ {1, 2, . . . , Z} such that t − τn̂ ∈ [−µ, µ]. Consequently, we have⏐⏐(SN ,M Tτn∆δ

)
(t)
⏐⏐ =

⏐⏐(SN ,M∆δ

)
(t − τn)

⏐⏐ ≤

{
1 if n = n̂

1/Z if n ̸= n̂ ,

where the first line follows from (23) and where the second line is a consequence of (24).
Using these upper bounds and applying the triangle inequality to the absolute value of (26)
yields⏐⏐(SN ,M fδ

)
(t)
⏐⏐ ≤

⏐⏐ f (τm)
⏐⏐ ⏐⏐(SN ,M∆δ

)
(t − τn̂)

⏐⏐+ Z∑
n=1,n ̸=m

⏐⏐ f (τn)
⏐⏐ ⏐⏐(SN ,M∆δ

)
(t − τn)

⏐⏐
≤
⏐⏐ f (τm)

⏐⏐+ 1
Z

Z∑
n=1,n ̸=m

⏐⏐ f (τn)
⏐⏐ ≤ ∥ f ∥∞ +

Z−1
Z ∥ f ∥∞ ≤ 2 ∥ f ∥∞ ,

and since t ∈ T was arbitrary, we have
SN ,M fδ


∞

≤ 2 ∥ f ∥∞ for all N , M ∈ N and therefore

∥ fδ∥U = sup
N ,M∈N0

SN ,M fδ
 ≤ 2 ∥ f ∥∞ .

(6) Finally, the definition of fδ in (25) shows that fδ(τn) = f (τn) for all τn ∈ Z because
δ < ρ/3 was chosen such that the support sets of the functions

{
Tτn∆δ

}Z
n=1 are mutually

disjoint. So the function f1 = fδ ∈ U , defined in (25), has all the properties claimed by the
lemma. ■
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7.2. A generalized uniform boundedness principle for non-linear operators

Since Theorem 3.3 allows for approximation operators AN : B → B which are not
necessarily linear, we will need a generalization of the well known uniform bounded-
ness principle for linear operators. This principle can be formulated as follows (see, e.g.,
[25, Chapter 5]). Let Φ = {ΦN }N∈N be a family of bounded linear functionals on a Banach
space B and assume that there exists a residual set K ⊂ B such that

sup
N∈N

|ΦN ( f )| < +∞ for all f ∈ K .

Then the functionals ΦN are uniformly bounded by a constant M < ∞, i.e. ∥ΦN ∥ ≤ M for all
N ∈ N. By the linearity of ΦN , this conclusion may be stated as follows: To every arbitrary
ball Bδ( f,B) ⊂ B with radius δ > 0 and center f ∈ B there exists a constant M = M(δ, f )
such that

|ΦN ( f )| ≤ M for every N ∈ N and for all f ∈ Bδ( f,B) . (27)

This uniform boundedness principle (also known as Banach–Steinhaus theorem) can be
generalized to non-linear (lower semi-) continuous functionals on B [15, Satz 4.4]. However,
then Conclusion (27) does no longer hold for arbitrary balls Bδ( f,B) ⊂ B, but there exists only
one fixed ball Bδ0 ( f0,B) ⊂ B, determined by the family of functionals Φ, such that (27) holds
only for all f ∈ Bδ0 ( f0,B). For completeness, we state this generalized uniform boundedness
principle in the form as it will be needed later, together with its short proof.

Lemma 7.2 (Generalized Uniform Boundedness Principle). Let B be a Banach space, let
Φ = {ΦN }N∈N be a family of lower semicontinuous functionals ΦN : B → R+ and assume
there exists a residual set K ⊂ B so that

sup
N∈N

ΦN ( f ) = C( f ) < +∞ for all f ∈ K .

Then there exist a constant CΦ < ∞, an f0 ∈ B, and a δ > 0 so that for every f ∈ Bδ( f0,B)
always ΦN ( f ) ≤ CΦ for all N ∈ N.

Proof. For any λ ≥ 0, we define the sets

L N (λ) =
{

f ∈ B : ΦN ( f ) ≤ λ
}

and LΦ(λ) =
⋂

N∈N L N (λ) .

Note that for every λ ≥ 0 the sets L N (λ) are either empty or closed because any ΦN is lower
semicontinuous. Consequently, also LΦ(λ) is (if it is not empty) a closed subset of B, because
the intersection of closed sets is closed.

Let f ∈ K be arbitrary. Then supN∈N ΦN ( f ) ≤ C( f ) < ∞ by the assumption of the lemma.
So if λ > C( f ) then f ∈ LΦ(λ) and so K ⊂

⋃
λ∈N LΦ(λ). In other words, K is contained in a

countable union of closed sets and since K is assumed to be of second category there exists a
λ0 ∈ N such that LΦ(λ0) is not nowhere dense. So there exist a δ0 > 0 and an f0 ∈ B such that
LΦ(λ0) ∩ Bδ0 ( f0,B) is dense in Bδ0 ( f0,B). However, since LΦ(λ0) is a closed set, we have
Bδ0 ( f0,B) ⊂ LΦ(λ0). ■

8. Proof of the divergence results

This section proves the main divergence results from Sections 3 and 4. First, Theorem 3.3 is
proved, showing the divergence of general approximation methods in U and Us. Afterward, the
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proof of Theorem 4.2 is presented. The last subsection contains two auxiliary lemmas which
are needed for the proof of Theorem 3.3. Recall from (10) that Bδ( f0,B) denotes the open ball
in the Banach space B with center f0 ∈ B and radius δ > 0.

8.1. Proof of Theorem 3.3

We prove the statement of the theorem for Us by contradiction. So assume the statement of
the theorem is wrong, i.e. assume the set

G(A) =

{
f ∈ Us : supN∈N ∥AN ( f )∥Us =: C( f ) < +∞

}
(28)

is of second category in Us. Based on this assumption we deduct a contraction in several steps.
(1) The assumption that (28) is of second category implies that the family {ΦN }N∈N of

functionals ΦN : Us → R+ given by ΦN ( f ) = ∥AN ( f )∥Us satisfies the conditions of the
generalized uniform boundedness principle (Lemma 7.2). So there exists a constant CΦ < ∞,
a function f0 ∈ Us, and a δ0 > 0 such that for all f ∈ Bδ0 ( f0,Us) always

∥AN ( f )∥Us ≤ CΦ for all N ∈ N .

(2) Let M ⊂ Us be the dense subset of Property (B) in Definition 3.2 for the operator
sequence {AN }N∈N. Then there exists an f1 ∈ M such that ∥ f1 − f0∥Us < δ0/2 and we
certainly have Bδ0/2( f1,Us) ⊂ Bδ0 ( f0,Us) which implies for every N ∈ N

∥AN ( f )∥Us ≤ CΦ for every f ∈ Bδ0/2( f1,Us) . (29)

(3) Let N ∈ N be arbitrary and let ZN ⊂ T be the sampling set associated with AN . We
choose an arbitrary f ∈ Bδ0/4( f1, C(T)) and consider the function g := f − f0 ∈ C(T) with
norm ∥g∥∞ < δ0/4. According to Lemma 7.1 there exists a gN ∈ Us such that

gN (τ ) = g(τ ) for all τ ∈ ZN and ∥gN ∥Us ≤ 2 ∥g∥∞ < δ0/2 .

Then we consider the function qN := f1 + gN which the two properties

qN ∈ Bδ0/2( f1,Us)

qN (τ ) = f1(τ ) + gN (τ ) = f1(τ ) + g(τ ) = f (τ ) , for all τ ∈ ZN .

So by Property (A) of the sequence {AN }N∈N, one has AN (qN ) = AN ( f ) and (29) shows that
∥AN ( f )∥Us = ∥AN (qN )∥Us ≤ CΦ . Since f ∈ Bδ0/4( f1, C(T)) and N ∈ N was arbitrary, we
thus get

∥AN ( f )∥Us ≤ CΦ for all f ∈ Bδ0/4( f1, C(T)) . (30)

(4) Now, we define two subsets of C(T) as follows

M0 :=
{
g ∈ Bδ0/4(0, C(T)) : ∃g1, g2 ∈ M ∩ Bδ0/4( f1, C(T)) so that g = g1 − g2

}
M1 = λ · M0 := { f = λ f0 : λ ∈ R, f0 ∈ M0} ,

and we notice that M0 is dense in Bδ0/4(0, C(T)) and that M1 is dense in C(T). These properties
of M0 and M1 are verified by Lemmas 8.1 and 8.2 in Section 8.3. Let g ∈ M∩Bδ0/4( f1, C(T))
be arbitrary. Since g ∈ M ⊂ Us, we have ∥g∥Us < +∞ and the triangle inequality and (30)
yields

∥g∥Us ≤ ∥g − AN (g)∥Us + ∥AN (g)∥Us ≤ ∥g − AN (g)∥Us + CΦ .
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Moreover, using Property (B) of the sequence {AN }N∈N, one gets

∥g∥Us ≤ lim sup
N→∞

∥g − AN (g)∥Us + CΦ = CΦ ,

showing that ∥g∥Us ≤ CΦ for all g ∈ M ∩ Bδ0/4( f1, C(T)).
Then we consider arbitrary functions g1, g2 ∈ M ∩ Bδ0/4( f1, C(T)) and set g0 := g1 − g2.

Since g1, g2 ∈ M ⊂ Us and because Us is a linear space, we have g0 ∈ Us with

∥g0∥Us = ∥g1 − g2∥Us ≤ ∥g1∥Us + ∥g2∥Us ≤ 2 CΦ .

This shows in particular that

∥g0∥Us ≤ 2 CΦ for all g0 ∈ M0 . (31)

Let f ∈ M1 be arbitrary and set f∗ :=
δ0

5 ∥ f ∥∞
f . Then f∗ ∈ M0 and (31) yields

∥ f ∥Us = 5
∥ f ∥∞

δ0
∥ f∗∥Us ≤ 10

∥ f ∥∞

δ0
CΦ

showing that for every f ∈ M1

∥SN f ∥∞ ≤ ∥ f ∥Us ≤
10 CΦ

δ0
∥ f ∥∞ for all N ∈ N . (32)

(5) Let f ∈ C(T) be arbitrary. Since M1 ⊂ C(T) is dense, there is a sequence { fn}n∈N ⊂ M1

with

lim
n→∞

∥ f − fn∥∞ = 0 . (33)

For every fixed N ∈ N, the operator SN : C(T) → C(T), as defined in (3), is bounded so that

lim
n→∞

∥SN ( f − fn)∥∞ = 0 for all N ∈ N . (34)

Therefore, for every arbitrary N ∈ N, one obtains

∥SN f ∥∞ ≤ ∥SN ( f − fn)∥∞ + ∥SN fn∥∞ ≤ ∥SN ( f − fn)∥∞ + ∥ fn∥Us

≤ ∥SN ( f − fn)∥∞ +
10CΦ

δ0
∥ fn∥∞

using (32) to obtain the last line. Because of (33), there exists an n0 ∈ N such that ∥ fn∥∞ ≤

∥ f ∥∞ + 1 for all n ≥ n0 and therefore

∥SN f ∥∞ ≤ ∥SN ( f − fn)∥∞ +
10CΦ

δ0

(
∥ f ∥∞ + 1

)
for all n ≥ n0 .

Since the left hand side of this inequality does not depend on n, one obtains from (34)

∥SN f ∥∞ ≤ lim sup
n→∞

∥SN ( f − fn)∥∞ +
10CΦ

δ0

(
∥ f ∥∞ + 1

)
=

10CΦ
δ0

(
∥ f ∥∞ + 1

)
,

and by the definition of the norm in Us, one gets ∥ f ∥Us = supN∈N ∥SN f ∥∞ ≤
10CΦ

δ0

(
∥ f ∥∞+1

)
.

Since f ∈ C(T) was chosen arbitrary, we thus have

∥ f ∥Us ≤
20CΦ

δ0
for all f ∈ C(T) with ∥ f ∥∞ ≤ 1 . (35)

(6) For any arbitrary K ∈ N, we define

fK (t) = C0 eiK t
K∑

k=1

sin(kt)
k

= i
C0

2

2K∑
k=0,k ̸=K

eikt

K − k
, t ∈ T ,
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with a constant 0 < C0 < 1.2 which can be chosen, independently of K , such that ∥ fK ∥∞ ≤ 1
for all K ∈ N [35, Chapter II.9]. For these functions, one gets

∥SK fK ∥∞ ≥ |(SK fK ) (0)| =
C0
2

∑K
k=1

1
k ≥

C0
2 log(K + 1) for all K ∈ N .

Combining this inequality with (35), one obtains
20CΦ

δ0
≥ ∥ fk∥Us = sup

N∈N
∥SN fK ∥∞ ≥ ∥SK fK ∥∞

C0
2 log(K + 1) for every K ∈ N .

However, this yields a contradiction for sufficiently large K ∈ N, showing that assumption (28)
was wrong. So the statement of the theorem is true.

The proof for B = U follows exactly the same lines as the above proof for B = Us with
almost no changes. Therefore, the detailed proof is omitted. ■

8.2. Proof of Theorem 4.2

Let E = {EN }N∈N be a sampling based Fourier approximation as assumed in the theorem.
It is sufficient to verify that the operators EN : B → B satisfy Properties (A) and (B) of
Definition 3.2. Then the statement follows from Theorem 3.3.

First we note that the assumption in Definition 4.1 that all functionals cN ,n : B → C are
continuous implies that the operators EN : B → B are (lower semi-) continuous. Then it is
obvious that E satisfies Property (A) with the sampling sets ZN =

⋃N
n=−N ZN ,n .

It remains to verify that E has Property (B). Let f ∈ P be an arbitrary trigonometric
polynomial of degree K ∈ N. Without loss of generality, we can assume that it has the
form f =

∑K
k=−K ck( f ) ek where some of the Fourier coefficients cn( f ) may be zero. By

the definition of the operators EL , we thus have

EL ( f ) =
∑K

n=−K cL ,n( f ) en for all L ≥ K .

Then for arbitrary N , M ∈ N and using Property (b) of E, one obtains

lim
L→∞

SN ,M EL ( f ) = lim
L→∞

min(N ,K )∑
n=− min(M,K )

cL ,n( f ) en =

min(N ,K )∑
n=− min(M,K )

cn( f ) en = SN ,M f ,

showing that limL→∞

SN ,M [EL ( f ) − f ]


∞
= 0 for all N , M ∈ N. So therewith, one obtains

lim
L→∞

sup
N ,M∈N

SN ,M [EL ( f ) − f ]


∞
= lim

L→∞

EL ( f ) − f

U = 0 ,

and because of (14), one has also limL→∞ ∥EL ( f ) − f ∥Us = 0. Since f ∈ P was arbitrary, we
thus have verified Property (B) of E with the set M = P . ■

8.3. Two auxiliary lemmas

For completeness and to make the paper self-contained, this subsection proves two simple
statements which are needed in the proof of Theorem 3.3 in Section 8.1.

Lemma 8.1. Let B be a Banach space, let M ⊂ B be a dense subset, and let f1 ∈ M be
arbitrary. Then for any δ > 0 the set

M0 =
{
g ∈ Bδ(0,B) : ∃g1, g2 ∈ M ∩ Bδ( f1,B) so that g = g1 − g2

}
is dense in Bδ(0,B).
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Proof. Assume the statement is wrong, i.e. assume that there exists an ϵ > 0 and a q ∈ Bδ(0,B)
such that Bϵ(q,B) ⊂ Bδ(0,B) and

M0 ∩ Bϵ(q,B) = ∅ . (36)

Then f2 = f1 + q belongs to Bδ( f1,B), and since M is dense in B, one always finds
f3 ∈ M ∩ Bδ( f1,B) so that ∥ f2 − f3∥B < ϵ/2. Then f = f3 − f1 belongs obviously to M0

and satisfies ∥ f − q∥B = ∥ f3 − f1 − q∥B = ∥ f3 − f2∥B < ϵ/2 showing that f ∈ Bϵ(q,B),
contradicting (36). ■

Lemma 8.2. Let B be a Banach space, let Bδ(0,B) =
{

f ∈ B : ∥ f ∥B < δ
}
, and let M0 be

a dense subset of Bδ(0,B). Then the set M1 =
{

f = λ f0 : λ ∈ R, f0 ∈ M0
}

is dense in B.

Proof. Assume the statement is wrong, i.e. assume there is an ϵ > 0 and a q ∈ B, q ̸= 0 so
that

M1 ∩ Bϵ(q,B) = ∅ . (37)

Let f1 =
δ
2

q
∥q∥B

∈ Bδ(0,B), and choose µ such that 0 < µ < δ
2 min

(
1, ϵ

∥q∥B

)
. Then

Bµ( f1,B) ⊂ Bδ(0,B) and since M0 is dense in Bδ(0,B) one always finds an f2 ∈ M0 such
that ∥ f1 − f2∥B < µ. Inserting the definition of f1, one obtainsq −

2
δ
∥q∥B f2


B

<
2µ

δ
∥q∥B < ϵ . (38)

So if f0 := λ f2 with λ =
2
δ
∥q∥B then f0 ∈ M1 and (38) shows that f0 ∈ Bϵ(q,B) contradicting

assumption (37). ■

Appendix. Properties of the Banach Spaces U , Us and U , Us

This appendix proves the properties of the spaces U , Us, U , and Us as stated in Section 2.2.
The first subsection verifies the statements concerning U and Us whereas the second subsection
presents the proof concerning U and Us.

A.1. The Banach spaces of U and Us – proof Theorem 2.2

(i) By the definitions (11) and (12) of ∥·∥U and ∥·∥Us , one has ∥ f ∥Us ≤ ∥ f ∥U for every
f ∈ U , showing in particular that U ⊆ Us. Let f ∈ U ⊂ C(T) be arbitrary, and for any M ∈ N
let

(VM f ) (t) =
1
M

∑M−1
N=0 (SN f )(t) , t ∈ T ,

be the first arithmetic means of the partial Fourier series SN f . Then the triangle inequality
yields

∥VM f ∥∞ ≤
1
M

∑M−1
N=0 ∥SN f ∥∞ ≤

1
M

∑M−1
N=0 ∥ f ∥Us = ∥ f ∥Us ≤ ∥ f ∥U ,

and one gets ∥ f ∥∞ ≤ ∥VM f ∥∞ + ∥ f − VM f ∥∞ ≤ ∥ f ∥Us + ∥ f − VM f ∥∞. By the Theorem
of Fejér (see, e.g., [35, Chapter III.3]), the last term on the right hand side converges to zeros
as M → ∞, proving that ∥ f ∥∞ ≤ ∥ f ∥Us ≤ ∥ f ∥U for any f ∈ U .

(ii) First, we verify the second statement for Us. It is easy to see that Us is a linear space.
So it remains to show that Us is complete. Let { fn}n∈N be an arbitrary Cauchy sequence in Us.
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Then (14) implies that { fn}n∈N is a Cauchy sequence in C(T). Consequently, there exists an
f ∈ C(T) such that limn→∞ ∥ f − fn∥∞ = 0, and it remains to show that f ∈ Us.

Since { fn}n∈N ⊂ Us is a Cauchy sequence, there exists an n0 ∈ N so that ∥ fn − fm∥Us ≤ 1
for all n, m ≥ n0. Therefore, one gets fn


Us

≤
 fn − fn0


Us

+
 fn0


Us

≤ 1 +
 fn0


Us

for all n ≥ n0 ,

and this implies certainly fn


Us
≤ max

(
1 +

 fn0


Us

, max
1≤m<n0

∥ fm∥Us

)
=: C2 for all n ∈ N .

Let N ∈ N be arbitrary. Then, because SN : C(T) → C(T) is bounded, we have
limn→∞ ∥SN f − SN fn∥∞ = 0 and so

∥SN f ∥∞ = lim
n→∞

∥SN fn∥∞ ≤ sup
n∈N

∥SN fn∥∞ ≤ sup
n∈N

(
sup
N∈N

∥SN fn∥∞

)
= sup

n∈N
∥ fn∥Us ≤ C2 ,

showing that f ∈ Us, i.e. showing that Us is complete. The proof for U follows exactly the
same lines and is therefore omitted. ■

A.2. Properties of U and Us – proof of Theorem 2.4, Lemma 2.3, and Corollary 2.5

This section verifies the properties of the spaces U and Us given in Theorem 2.4. The proof
of this theorem follows easily from Lemma 2.3, which we will prove first. However, some
necessary technicalities in the proof of Lemma 2.3 are handled by the following auxiliary
lemma.

Lemma A.1. Let Ň ∈ N be arbitrary. To every r ∈ R+ there exists a trigonometric polynomial
f Ň ,r and an N̂ ∈ N with N̂ > Ň such that

(a)
 f Ň ,r


∞

≤ 1
(b)

(
SN ,M f Ň ,r

)
(t) = 0 for all t ∈ T and for every N < Ň and all M ∈ N0

(c) maxN ,M∈N0

SN ,M f Ň ,r


∞

> r
(d) SN ,M f Ň ,r = f Ň ,r for all N > N̂ and all M ∈ N0.

Proof. Throughout this proof, we consider polynomials pK ,L ∈ P of the form

pK ,L (t) = C0 eiLt
(∑K

k=1
sin(kt)

k

)
= i C0

2

[∑L−1
n=L−K

eint

L−n +
∑L+K

n=L+1
eint

L−n

]
, t ∈ T ,

(A.1)

with K , L ∈ N0. Therein, C0 > is chosen such that
pK ,L


∞

≤ 1 for all K , L ∈ N0. Such a
constant exists (cf. [35, Chapter II.9] and the discussion in the proof of Theorem 3.3).

Let Ň ∈ N be arbitrary and choose K ∈ N so that C0
2 log(K + 1) > r . Then we set

L = Ň + K and N̂ = L + K . With these values for K and L , we consider the polynomial
pK ,L given in (A.1). Note that by its construction all Fourier coefficients cn(pK ,L ) with n ≤ 0
are necessarily zero. Next, SN ,M pK ,L is investigated on three different sets for the index N and
for an arbitrary M ∈ N0.
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(1) For N < Ň = L − K , Definition (A.1) of pK ,L shows immediately that SN ,M pK ,L = 0.
(2) Similarly, for N > N̂ , one obtains immediately SN pK ,L = pK ,L .
(3) From the interval Ň ≤ N ≤ N̂ , we pick for the moment the value N = L . Then (A.1)

yields(
SN ,M pK ,L

)
(0) =

(
SL ,0 pK ,L

)
(0) =

C0
2

∑K
k=1

1
k ≥

C0
2 log(K + 1)

showing that

max
Ň≤N≤N̂ ,M∈N0

SN ,M pK ,L


∞
≥

C0
2 log(K + 1) > r .

Finally, we set f Ň ,r = pK ,L . Then the previously derived properties of pK ,L show that f Ň ,r
satisfies the statement of the lemma. ■

Remark A.1. The trigonometric polynomials f Ň ,r , constructed in the previous proof, are the
building blocks in the following proof of Lemma 2.3. These polynomials have the form

f Ň ,r (t) =
∑N̂

n=Ň cn( f Ň ,r ) eint , t ∈ T ,

with Ň > 0. So all of its coefficients cn( f Ň ,r ) with n < Ň and with n > N̂ are equal to zero,
i.e. the support of the sequence of Fourier coefficients of f Ň ,r satisfies

supp
({

cn( f Ň ,r )
}

n∈Z

)
⊂ [Ň , N̂ ] ⊂ N

and the degree of f Ň ,r is N̂ = deg( f Ň ,r ).

With Lemma A.1 at our disposal, we can now prove Lemma 2.3 showing that there exist
functions f ∈ Us for which the Fourier series SN f does not converge uniformly to f .

Proof (Lemma 2.3). We construct a particular f ∈ U with the property claimed by the
lemma. This construction is based on the trigonometric polynomials f Ň ,r used in the proof
of Lemma A.1.

(1) At the beginning, we construct recursively a sequence {pk}
∞

k=1 of trigonometric polyno-
mials and associate sequences

{
Ňk
}∞

k=1 ⊂ N and
{

N̂k
}∞

k=1 ⊂ N and {Rk}k∈N ⊂ R. Starting with
k = 1, we define Ň1 = 0, r1 = (3 + 1)2, and p1 = f Ň1,r1

where f Ň1,r1
is given by Lemma A.1

and satisfies therefore ∥p1∥∞ ≤ 1. Then we set R1 = maxN∈N ∥SN p1∥∞ and N̂1 = deg(p1),
and we define the trigonometric polynomial

ϕ1 =
1

R1
p1 .

For k = 2, we define Ň2 = N̂1 + 1, r2 = (3 + 2)2, and p2 = f Ň2,r2
with ∥p2∥∞ ≤ 1. Then we

set R2 = maxN∈N ∥SN p2∥∞ and N̂2 = deg(p2) and we define

ϕ2 = ϕ1 +
1

R2
p2 .

Assume we already defined pk−1, Ňk−1, N̂k−1, and Rk−1. Then we set Ňk = N̂k−1 + 1,
rk = (3 + k)2 and define the polynomial pk = f Ňk ,rk

according to Lemma A.1 and which
satisfies ∥pk∥∞ ≤ 1. Then we set Rk = maxN∈N ∥SN pk∥∞ and N̂k = deg(pk) and define

ϕk = ϕk−1 +
1

Rk
pk =

∑k
n=1

1
Rn

pn .
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Notice that the sequences
{

Ňn
}

n∈N and
{

N̂n
}

n∈N are related as follows

· · · < N̂n−1 < Ňn < N̂n < Ňn+1 < · · · , n ∈ N .

So the intervals [Ňn, N̂n] are mutually disjoint, and since [Ňn, N̂n] is the support set of the
Fourier coefficients of the trigonometric polynomials {pn}n∈N and {ϕn}n∈N, it is clear that these
support sets are mutually disjoint, i.e.

supp
(
{cn(pk)}n∈Z

)
∩ supp

(
{cn(pℓ)}n∈Z

)
= ∅ for k ̸= ℓ .

Moreover, since the polynomials pn were constructed according to Lemma A.1, Properties b)
and d) from this lemma yield in particular

SN ,M pm =

{
0 for all N < Ňm

pm for all N > N̂m
for all M ∈ N0 , (A.2)

and since SN = SN ,N the above relation holds in particular if we replace SN ,M by SN .
Property (A.2) of the polynomials pn will be used extensively during the remainder of this
proof.

(2) Based on the previously constructed sequences, we define the function

f (t) =
∑

∞

n=1
1

Rn
pn(t) , t ∈ T . (A.3)

Using that Rn > rn for every n ∈ N (cf. Point (c) of Lemma A.1), one obtains

∥ f ∥∞ ≤

∞∑
n=1

∥pn∥∞

rn
≤

∞∑
n=1

1
rn

=

∞∑
n=1

1
(3 + n)2 =

∞∑
k=4

1
k2 ≤

∫
∞

3

dt
t2 =

1
3

, (A.4)

showing that the sum, defining f , converges absolutely on T. Next, we verify that f ∈ Us. To
this end, let N ∈ N be arbitrary. By the construction of the sequences

{
Ňn
}

n∈N and
{

N̂n
}

n∈N
in Step 1, there exists exactly one m ∈ N such that N ∈ [Ňm, N̂m], and so (A.2) yields

SN f =
∑

∞

n=1
1

Rn
SN pn =

∑m−1
n=1

1
Rn

SN pn +
1

Rm
SN pm =

∑m−1
n=1

1
Rn

pn +
1

Rm
SN pm .

Then the definition of the numbers Rn and the fact ∥pn∥∞ ≤ 1 give the bound

∥SN f ∥∞ =

m−1∑
n=1

1
Rn

∥pn∥∞ +
1

Rm
∥SN pm∥∞ ≤

∞∑
n=1

1
rn

+
1

Rm
max
N∈N

∥SN pm∥∞

= 1 +

∞∑
n=1

1
rn

≤ 4/3 ,

using (A.4) to get the last equation. So ∥ f ∥Us = supN∈N ∥SN f ∥∞ ≤ 4/3 < ∞ showing that
f ∈ Us.

(3) For an arbitrary m ∈ N, (A.2) yields

SŇm
f = SŇm

(
∞∑

n=1

1
Rn

pn

)
=

∞∑
n=1

1
Rn

SŇm
pn =

m−1∑
n=1

1
Rn

SŇm
pn =

m−1∑
n=1

1
Rn

pn .

In particular, since ∥pn∥∞ ≤ 1 for every n ∈ N, we getSŇm
f


∞
≤
∑m−1

n=1
1

Rn
≤
∑

∞

n=1
1
rn

≤
1
3 < ∞ for all m ∈ N ,

showing that

lim inf
N→∞

∥SN f ∥∞ ≤
∑

∞

n=1
1
rn

< ∞ . (A.5)
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(4) As in Step 2, let N ∈ N be arbitrary. Then there exists exactly one m ∈ N such that
N ∈ [Ňm, N̂m], and so (A.2) yields again

SN f =
∑

∞

n=1
1

Rn
SN pn =

∑m−1
n=1

1
Rn

SN pn +
1

Rm
SN pm

and consequently

∥SN f ∥∞ ≥
1

rm
∥SN pm∥∞ −

∑m−1
n=1

1
rn

∥SN pn∥∞ ≥
1

rm
∥SN pm∥∞ −

∑m−1
n=1

1
rn

.

So by Part (c) of Lemma A.1, we have maxN∈[Ňn ,N̂n ] ∥SN f ∥∞ ≥ 1 −
∑

∞

n=1
1
rn

showing that

lim sup
N→∞

∥SN f ∥∞ ≥ 1 −
∑

∞

n=1
1
rn

. (A.6)

(5) Using (A.5) and (A.6), one obtains

lim sup
N→∞

∥SN f ∥∞ − lim inf
N→∞

∥SN f ∥∞ ≥ 1 − 2
∑

∞

n=1
1
rn

≥ 1 −
2
3 =

1
3 > 0 ,

applying (A.4) to get the numerical value on the right. This proves the statement for Us.
The second statement of Lemma 2.3 holds for the same function f as constructed in (A.3).

Since all Fourier coefficients cn( f ) with n < 0 of f are equal to zero, one has SN ,M f = SN f
for all N , M ∈ N0. In particular, ∥ f ∥U = ∥ f ∥Us showing that f ∈ U , and in all other equations
of the above proof the operator SN can be replaced by SN ,M without changing any of the
conclusions. ■

Proof (Theorem 2.4). The completeness of U and Us follows already from Theorem 2.2. To
verify the norm convergence of SN f and SN ,M f , we have to verify that the norms of the
operators SN : Us → Us and SN ,M : U → U are uniformly bounded. For the first operator, we
have

∥SN ∥Us→Us = sup
∥ f ∥Us ≤1

∥SN f ∥Us = sup
∥ f ∥U≤1

sup
M∈N

∥SM SN f ∥∞ = sup
∥ f ∥U≤1

sup
K∈N

∥SK f ∥∞

= sup
∥ f ∥U≤1

∥ f ∥Us = 1 , (A.7)

and for the second operator one obtains exactly the same result. Then the norm convergence
of the Fourier series follows from the fact that the trigonometric polynomials P are dense in
Us and U and that the Fourier series converges for all p ∈ P .

Next, we verify Statement (3). To this end, let f ∈ Us be arbitrary. Then (14) and (15)
imply limN→∞ ∥ f − SN f ∥∞ = 0 proving that Us ⊆

{
f ∈ Us : limN→∞ ∥ f − SN f ∥∞ = 0

}
.

Conversely, let f ∈ Us be an arbitrary function which satisfies

lim
N→∞

∥ f − SN f ∥∞ = 0 (A.8)

and set pN = SN f ∈ P . Then for any N ∈ N, one has

∥ f − pN ∥Us = sup
M∈N

∥SM f − SM pN ∥∞ = sup
M∈N

∥SM f − SM SN f ∥∞

= sup
M≥N

∥SM f − SN f ∥∞

because SM pN = SN pN = SN f for every M ≥ N and because SM f = SM SN f for all
M < N . It follows from (A.8) that to every ϵ > 0 there exists an N0 = N0(ϵ) such that
∥SM f − SN f ∥∞ < ϵ for all M, N ≥ N0, and so one gets for pN0 = SN0 f f − pN0


Us

= sup
M≥N

SM f − SN0 f


∞
< ϵ .
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So to the arbitrarily chosen f ∈ Us, which satisfies (A.8), and an arbitrary ϵ > 0, we found a
polynomial pN0 ∈ P such that

 f − pN0


Us

< ϵ, proving that{
f ∈ Us : limN→∞ ∥ f − SN f ∥∞

}
⊆ span { f ∈ P}

∥·∥Us
= Us .

Thus Us is precisely the set of all f ∈ C(T) with uniformly convergent Fourier series.
It remains to verify that Us is a proper subset of Us, i.e. that there exists an f ∈ Us which

belongs not to Us. We prove the statement by contradiction. Let f ∈ Us be arbitrary and assume
that f belongs also to Us. The polynomials P are dense in Us. So to every ϵ > 0 there exists a
p ∈ P such that ∥ f − p∥Us < ϵ/2, and because of (14), we have ∥ f − p∥∞ < ϵ/2. Therewith,
one obtains for every N ∈ N

∥ f − SN f ∥∞

≤ ∥ f − p∥∞ + ∥p − SN p∥∞ + ∥SN p − SN f ∥∞

≤ ϵ/2 + ∥p − SN p∥∞ + ∥SN (p − f )∥∞ ≤ ϵ/2 + ∥p − SN p∥∞ + ∥p − f ∥Us

≤ 2 · ϵ/2 + ∥p − SN p∥∞ .

Because p ∈ P is a trigonometric polynomial, one has limN→∞ ∥p − SN p∥∞ = 0 showing that
lim supN→∞

∥ f − SN f ∥∞ ≤ ϵ. Since ϵ > 0 was arbitrary, we have limN→∞ ∥ f − SN f ∥∞ =

0. In particular, because f ∈ Us was arbitrary, we have limN→∞ ∥SN f ∥∞ = ∥ f ∥∞ for all
f ∈ Us. But this contradicts Lemma 2.3 and so there exist functions f ∈ Us which do not
belong to Us.

Therewith, Statement (3) of the theorem is proved. The proof of Statement (4) follows the
same lines and is therefore omitted. ■

Proof (Corollary 2.5). First, we rearrange the sequence {en}n∈Z according to the corollary, i.e.

ẽn :=

{
e−(n−1)/2 : n = 1, 3, 5, 7, . . .

en/2 : n = 2, 4, 6, 8, . . . .
(A.9)

Therewith ẽ = {̃en}n∈N0
and we have to show that this sequence is a basis for Us. To this end,

we consider the partial sum operators S̃N : Us → Us associated with ẽ and given by

S̃N f =
∑N

n=0 c̃n( f ) en , N ∈ N0 ,

wherein the coefficients {̃cn( f )}n∈N0
are defined in terms of the Fourier coefficients {cn( f )}n∈Z

of f in the same way as {̃en}n∈N0
was defined in (A.9) in terms of {en}n∈Z. One easily verifies

that these operators are related to the symmetric partial Fourier series (3) by

S̃2K+1 f = SK f for K = 0, 1, 2, 3, . . .

S̃2K f = SK−1 f + cK ( f ) eK for K = 1, 2, 3, 4, . . . .
(A.10)

It is well known that ẽ is a Schauder basis for Us if and only if the partial sum operators are
uniformly bounded. Using (A.7), it follows from (A.10) that

̃SN

Us→Us

= 1 for all odd N .
For even indices, i.e. for N = 2K with K ∈ N, the second line of (A.10) yields̃S2K


Us→Us

= sup
∥ f ∥Us ≤1

S̃2K f

Us

≤ sup
∥ f ∥Us ≤1

S̃K−1 f

Us

+ sup
∥ f ∥Us ≤1

|cK ( f )| ∥eK ∥Us ≤ 2

using again (A.7) and that ∥eK ∥Us = 1 for all K ∈ N0 and noting that (14) implies
|cK ( f )| ≤ ∥ f ∥∞ ≤ ∥ f ∥Us for all K ∈ N0. So the norms of the partial sum operators S̃N

are uniformly bounded for all N ∈ N0, proving that ẽ is a Schauder basis for Us. ■
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Proof (Lemma 2.6). Let t0 ∈ T be arbitrary. For any N ∈ N, we define the functional
Ψt0,N : S → C by Ψt0,N ( f ) = (SN f ) (t0). By the assumption of the corollary, it follows
that supN∈N

⏐⏐Ψt0,N ( f )
⏐⏐ = supN∈N |(SN f ) (t0)| < ∞. Then the uniform boundedness principle

(Theorem of Banach–Steinhaus) implies that supN∈N
Ψt0,N

 = C(S, t0) < ∞. Moreover, since
S is shift-invariant, the constant on the right hand side is in fact independent on t0, i.e. there
is a C(S) < ∞ such that supN∈N

Ψt,N
 ≤ C(S) for all t ∈ T. So for a fixed N ∈ N, the

operator norm of SN is

∥SN ∥S→C(T) = sup
f ∈S

sup
t∈T

|(SN f ) (t)|
∥ f ∥S

= sup
t∈T

sup
f ∈S

⏐⏐Ψt,N ( f )
⏐⏐

∥ f ∥S
= sup

t∈T

Ψt,N
 = C(S) ,

and since the right hand side is independent on N , one has ∥ f ∥Us = supN∈N ∥SN f ∥∞ = C(S),
i.e. ∥ f ∥Us ≤ C(S) ∥ f ∥S for all f ∈ S which proves the lemma. ■
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