JOURNAL OF APPROXIMATION THEORY | 卷:210 |
Yet another look at positive linear operators, q-monotonicity and applications | |
Article | |
Kopotun, K. A.1  Leviatan, D.2  Prymak, A.1  Shevchuk, I. A.3  | |
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada | |
[2] Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel | |
[3] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, UA-01033 Kiev, Ukraine | |
关键词: Positive linear operators; Degree of approximation; Jackson-type estimates; Moduli of smoothness; Gavrea's operator; Bernstein-Durrmeyer-Lupas polynomials with ultraspherical weights; | |
DOI : 10.1016/j.jat.2016.06.001 | |
来源: Elsevier | |
【 摘 要 】
For each q is an element of N-0, we construct positive linear polynomial approximation operators M-n that simultaneously preserve k-monotonicity for all 0 <= k <= q and yield the estimate vertical bar f(x) - M-n(f, x)vertical bar <= c omega(phi lambda)(2) (f,n(-1)phi(1-lambda/2)(x) (phi(x) + 1/n)(-lambda/2)), for x is an element of [0, 1] and lambda is an element of [0, 2), where phi(x) := root x(1-x) and omega(psi)(2) is the second Ditzian-Totik modulus of smoothness corresponding to the step-weight function psi. In particular, this implies that the rate of best uniform q-monotone polynomial approximation can be estimated in terms of omega(psi)(2) (f, 1/n). (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jat_2016_06_001.pdf | 321KB | download |