期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:167
Sampling numbers of periodic Sobolev spaces with a Gaussian measure in the average case setting
Article
Huang, Zexia1  Wang, Heping1 
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
关键词: Average sampling numbers;    Standard information;    Optimal algorithm;    Gaussian measure;   
DOI  :  10.1016/j.jat.2012.11.010
来源: Elsevier
PDF
【 摘 要 】

In this paper, we investigate p-average sampling numbers of a periodic Sobolev space W-2(r) with a Gaussian measure in the L-q metric for 1 <= q <= infinity and 0 < p < infinity, and obtain their asymptotic orders. Moreover, we show that in the average case setting, the operators I-n, which are the Lagrange interpolating operators, are asymptotically optimal in the Lq metric for all 1 <= q <= infinity. It is interesting to note that in the worst case setting, In are not asymptotically optimal algorithms in the Lq metric for q = 1 or infinity. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2012_11_010.pdf 204KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次