JOURNAL OF ALGEBRA | 卷:568 |
Indecomposable tilting modules for the blob algebra | |
Article | |
Hazi, A.1  Martin, P. P.1  Parker, A. E.1  | |
[1] Univ Leeds, Dept Math, Leeds LS2 9JT, W Yorkshire, England | |
关键词: Blob algebra; Tilting modules; KLR algebra; | |
DOI : 10.1016/j.jalgebra.2020.09.042 | |
来源: Elsevier | |
【 摘 要 】
The blob algebra is a finite-dimensional quotient of the Hecke algebra of type B which is almost always quasi-hereditary. We construct the indecomposable tilting modules for the blob algebra over a field of characteristic 0 in the doubly critical case. Every indecomposable tilting module of maximal highest weight is either a projective module or an extension of a simple module by a projective module. Moreover, every indecomposable tilting module is a submodule of an indecomposable tilting module of maximal highest weight. We conclude that the graded Weyl filtration multiplicities of the indecomposable tilting modules in this case are given by inverse Kazhdan-Lusztig polynomials of type (A) over tilde (1). (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2020_09_042.pdf | 786KB | download |