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The blob algebra is a finite-dimensional quotient of the Hecke 
algebra of type B which is almost always quasi-hereditary. 
We construct the indecomposable tilting modules for the 
blob algebra over a field of characteristic 0 in the doubly 
critical case. Every indecomposable tilting module of maximal 
highest weight is either a projective module or an extension 
of a simple module by a projective module. Moreover, 
every indecomposable tilting module is a submodule of an 
indecomposable tilting module of maximal highest weight. 
We conclude that the graded Weyl filtration multiplicities of 
the indecomposable tilting modules in this case are given by 
inverse Kazhdan–Lusztig polynomials of type Ã1.

© 2020 Elsevier Inc. All rights reserved.

Introduction

The blob algebra is an extension of the ordinary Temperley–Lieb algebra introduced 
by the second author and Saleur in [15]. It can be thought of as the Temperley–Lieb 
algebra of type B, as it is a quotient of the type B Hecke algebra in much the same way 
as the ordinary Temperley–Lieb algebra is a quotient of the Hecke algebra of type A. 
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Originally motivated by the need to control lattice boundary conditions in lattice models 
in statistical mechanics, the blob algebra and its generalizations remain an active topic 
of research in both physics (e.g. [9,8,7]) and representation theory (e.g. [19,20,1]).

Like the ordinary Temperley–Lieb algebra, the representation theory of the blob al-
gebra is controlled by the values of its parameters. Generically the blob algebra is 
semisimple, with certain integral representations Δ(λ) called Weyl modules giving a 
complete set of simple modules. Yet for some critical parameter values, the blob algebra 
is only quasi-hereditary, and the Weyl modules are no longer simple. In this paper we 
focus on the doubly critical case, when the representation theory is the most interesting 
(e.g. with blocks of arbitrary size, no known quiver-and-relations presentation, etc.). In 
this case, the block structure is controlled by a linkage principle in terms of an affine 
Weyl group W of type Ã1.

Recall that a tilting module for a quasi-hereditary algebra is a representation with 
a filtration by Weyl modules as well as a filtration by dual Weyl modules. For each 
weight λ, there is an indecomposable tilting module T (λ) of highest weight λ, and all 
indecomposable tilting modules are of this form. Our main result in this paper is a 
construction of T (λ) for the doubly critical blob algebra Bκ

n over a field of characteristic 
0. The construction closely depends on the quasi-hereditary Bruhat partial order ≤ on 
weights, defined in 2.3. The W -orbit of λ has one maximal weight λmax and at most two 
minimal weights with respect to ≤. We write L(λ) for the simple head of Δ(λ), P (λ) for 
the projective indecomposable cover of L(λ), and O≤λ(M) for the maximal submodule 
of a module M whose composition factors lie in {L(μ) : μ ≤ λ}. Using this notation, 
our construction is as follows (see Theorems 5.4 and 5.5).

Theorem. Suppose λ is a weight for Bκ
n. Let λmin be a minimal weight in the W -orbit 

of λ. Then T (λ) = O≤λ(T (λmax)). The maximal highest weight tilting module T (λmax)
is constructed from P (λmin) as follows.

(i) If λmin is the only minimal weight in the W -orbit of λ, then T (λmax) = P (λmin).
(ii) If there is another minimal weight λ′

min in the W -orbit of λ, then T (λmax) is the 
unique extension of the form

0 → P (λmin) → T (λ) → Δ(λ′
min) → 0.

For x, y ∈ W , write

hx,y(v) =
{
v�(x)−�(y) if y ≤ x,
0 otherwise,

which is the inverse Kazhdan–Lusztig polynomial of type Ã1. Using the decomposition 
numbers for Bκ

n (first calculated in [17]), our construction implies the following Weyl 
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Fig. 1. The (classical) weights λmax, λmin, and λ′
min, with alcoves labelled by wλ.

filtration multiplicities for the regular indecomposable tilting modules (see also Corol-
lary 5.7). Here for each regular weight λ, let wλ ∈ W such that wλ(λmax) = λ.

Theorem. Let λ, μ be regular weights for Bκ
n. Then

(T (μ) : Δ(λ)) = hwλ,wμ(1).

See Fig. 1 for an example depicting the weight and alcove labels used in these theorems.

Our proofs depend in a crucial way not only on the decomposition numbers and 
structure of the Weyl modules from [17], but also on the graded representation theory 
of the blob algebra. The existence of a non-trivial ‘hidden’ grading on the blob algebra 
is a consequence of the Brundan–Kleshchev isomorphism [2] between cyclotomic Hecke 
algebras and KLR algebras, which are graded. (This explains why previous work such as 
[16,21] on full tilting modules did not get very close to determining the indecomposable 
tilting modules.) As a bonus we obtain the graded Weyl filtration multiplicities of the 
graded indecomposable tilting modules with no extra work. Our result is perhaps the first 
example of how the hidden grading on the blob algebra can be used to solve problems 
which a priori are not graded at all.

We also make extensive use of KLR diagrammatics for the KLR presentation of the 
blob algebra, as described in [12]. The classical diagrammatic calculus for the blob algebra 
in terms of ‘Temperley–Lieb diagrams with blobs’ gives a cellular basis which is integral 
and multiplicative. However, it is difficult in general to describe the simple modules in 
terms of this basis. By contrast, KLR algebras have a complicated diagram calculus 
reflecting the KLR presentation, in which certain fixed parameter values are ‘built-in’ 
and cannot be changed. On the other hand, KLR diagrams give more information about 
the structure of projective modules, in particular whether certain composition factors 
(or extensions between composition factors) are present. Fortunately for us, we will only 
need a simplified (but still complicated) version of the KLR diagram calculus.

Much of this machinery applies, at least in principle, to the generalised blob algebras 
(cf. e.g. [1], [18], [12]). For example, the level l generalised blob algebras are controlled by 
an affine Weyl group Wl of type Ãl−1, and there is a corresponding KLR presentation. 
For λ a regular weight for the level l generalised blob algebra and λmax maximal in the 
Wl-orbit of λ, let wλ ∈ Wl to be the unique element in the affine Weyl group such that 
wλ(λmax) = λ. For x, y ∈ Wl, write hx,y for the inverse Kazhdan–Lusztig polynomial 
of type Ãl−1. The following conjecture is the natural extension of our Weyl filtration 
multiplicities result.
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Conjecture. Let λ, μ be weights for the level l generalised blob algebra over a field of 
characteristic 0. Then

(T (μ) : Δ(λ)) = hwλ,wμ(1).

The biggest obstacle to proving this conjecture is the lack of knowledge about the 
(graded) structure of the Weyl modules and the projective modules in higher levels. 
In the modular setting, it is not immediately obvious what should replace the inverse 
Kazhdan–Lusztig polynomials hx,y above, although we have some ideas (see Remark 5.9) 
based on the ‘Blob vs Soergel’ conjecture of Libedinsky–Plaza [12].

The layout of the paper is as follows. In §1 we define the doubly critical blob algebra 
Bκ

n using the KLR presentation and describe the corresponding weight combinatorics. In 
§2 we summarise the quasi-hereditary representation theory of Bκ

n. In §3 we exploit the 
KLR presentation to obtain bases for the indecomposable projective modules and their 
composition factors. In §4 we get to work with KLR diagrammatic calculations which 
give the main result in the case of singular weights. Finally in §5 we use the singular 
version to prove the main result for all weights.

1. Preliminaries: the blob algebra Bκ
n

Suppose e > 1 is an integer and let I = Z/eZ. An adjacency-free bicharge is an 
ordered pair κ = (κ1, κ2) ∈ I2 such that κ1 �= κ2, κ2 ± 1 (this implicitly requires e ≥ 4). 
For i ∈ I define

〈i|κ〉 =
{

1 if i = κ1 or i = κ2,
0 otherwise.

For any n ∈ N, the symmetric group Sn acts on the set of tuples In by permutation. 
We write sr for the simple transposition (r r+1) in the symmetric group Sn.

Definition 1.1. Let k be a field, n, e ∈ N, and κ be an adjacency-free bicharge. The 
(doubly critical) blob algebra Bκ

n over k is the Z-graded k-algebra generated by

ψr for 1 ≤ r ≤ n− 1, (1)

yr for 1 ≤ r ≤ n, (2)

e(i) for i ∈ In, (3)

subject to relations

e(i)e(j) = δi,je(i) for all i, j ∈ In (4)∑
e(i) = 1 (5)
i∈In
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yre(i) = e(i)yr (6)

ψre(i) = e(sri)ψr (7)

yrys = ysyr (8)

ψrys = ysψr when s �= r, r + 1 (9)

ψrψs = ψsψr when |r − s| > 1 (10)

ψryr+1e(i) = (yrψr − δir,ir+1)e(i) (11)

yr+1ψre(i) = (ψryr − δir,ir+1)e(i) (12)

ψ2
re(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e(i) if ir+1 �= ir, ir ± 1
0 if ir+1 = ir

(yr+1 − yr)e(i) if ir+1 = ir + 1
(yr − yr+1)e(i) if ir+1 = ir − 1

(13)

ψrψr+1ψre(i) =

⎧⎪⎪⎨
⎪⎪⎩

(ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir = ir+1 − 1
(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir = ir+1 + 1
ψr+1ψrψr+1e(i) otherwise

(14)

y
〈i1|κ〉
1 e(i) = 0 (15)

e(i) = 0 when i2 = i1 + 1 (16)

and a grading defined by

deg e(i) = 0, deg yre(i) = 2, degψre(i) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ir+1 = ir ± 1,
−2 if ir+1 = ir,
0 otherwise.

In the presentation in Definition 1.1, each e(i) is a (non-central) idempotent, each ψr

is analogous to the simple transposition sr in the symmetric group Sn, and each yr is 
akin to the nilpotent part of the corresponding Jucys–Murphy element in the symmetric 
group algebra kSn.

There is also a presentation of this algebra in terms of KLR diagrams [12, §3.2]. A 
KLR diagram with n strings consists of n paths of the form p : [0, 1] → R ×[0, 1] satisfying 
the following properties:

• for each path p we have p(0) = (x, 0) and pr(1) = (x′, 1) for some x, x′ ∈ R;
• all intersections are transversal;
• there are no triple intersections;
• each path may be decorated with a finite number of dots at non-intersection points.

Each path p is also labelled with a residue i ∈ I.
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We consider KLR diagrams up to isotopy; in other words, we are allowed to move these 
paths continuously as long as the properties above still hold and no intersections are 
added or removed. The bottom (resp. top) of a KLR diagram is the sequence of residues 
labelling the paths, read from left to right. The product of two diagrams D and D′ is 
defined to be their vertical concatenation (with D on top of D′) whenever the bottom of 
D equals the top of D′. Otherwise the product is defined to be 0. The diagrammatic blob 
algebra Bκ

n is then the set of all k-linear combinations of KLR diagrams with n strings, 
with a diagrammatic product defined by k-linear extension, subject to the following 
relations:

= − δij

= − δij

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if |i− j| > 1,

− if j = i + 1,

− if j = i− 1,

0 if i = j.

= + α

in all regions of a KLR diagram, where α = 1 when i = k = j − 1, α = −1 when 
i = k = j + 1, and α = 0 otherwise, as well as the relations
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= 0, if i1 = κj for some j,

= 0, if i1 �= κj for all j,

= 0, if i2 = i1 + 1.

If w = sr1sr2 · · · srk is a reduced expression in Sn, we write ψw = ψr1ψr2 · · ·ψrk for 
the product of the corresponding ψ-generators. Diagrammatically ψw (or more precisely, 
ψwe(i) for some i ∈ In) looks like the wiring diagram for w. We also write ( ) for the 
unique anti-involution which fixes each of the generators ψr, yr, and e(i).

1.1. Locality

We call a relation in the generators of Bκ
n local if the relation still holds when the 

indices of the generators are shifted by some amount. All the relations in Definition 1.1
above are local except for (15) and (16). The relation (15) is also the only one in which 
κ appears. Incidentally it is immediately clear that all other relations do not depend 
on precise values of sequences i ∈ In indexing the idempotents, but only on relative 
differences ir+1−ir for some integer 1 ≤ r ≤ n. In fact for any i ∈ I, if κ′ = (κ1+i, κ2+i)
then we have Bκ

n
∼= Bκ′

n , and this isomorphism maps e(i) 
→ e(i + (i, . . . , i)). Thus Bκ
n

only depends on the difference κ1 − κ2 ∈ I up to isomorphism.
When simplifying KLR diagrams we adopt the convention of circling regions wherever 

we apply a local relation only involving ψ-generators. These circles (which appear in 
colour in the online version) are only a helpful annotation and should not be considered 
an intrinsic part of the diagram. Similarly whenever we apply relations (11) or (12) in the 
distinct residue case, we will draw a (coloured) arrow parallel to the string to indicate 
how the y-generator ‘slides’ along the string. The most important non-local relation 
which we will use takes the following form.

Lemma 1.2. Let i ∈ In and 1 ≤ r ≤ n − 1 be an integer such that |ir − ir+1| = 1 but 
e(sri) = 0 in Bκ

n. Then yr+1e(i) = yre(i).

Proof. Apply (13) to obtain

yr+1e(i) = yre(i) ± ψ2
re(i) = yre(i) ± ψre(sri)ψr = yre(i). �
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When applying Lemma 1.2 to a KLR diagram, we will draw a dashed (coloured) line 
transverse to the strings to indicate which idempotent e(i) we are using, and a (coloured) 
arrow to show where the y-generator ‘jumps’ to a different string.

1.2. The classical blob algebra

Definition 1.1 presents the blob algebra as a quotient of a cyclotomic KLR algebra 
as in [20], with the same generators and all the same relations plus the extra relation 
(16). This does not correspond to the original definition of the blob algebra in [15] as an 
extension of the Temperley–Lieb algebra. However, our definition is equivalent in many 
cases due to the Brundan–Kleshchev isomorphism [2, Theorem 1.1] between cyclotomic 
KLR algebras and cyclotomic Hecke algebras.

Theorem 1.3 ([20, Corollary 3.6]). Suppose e > 1 is an integer which is not a multiple 
of the characteristic of k. Let m be an integer with 1 < m < e − 1. Set κ = (0, m), an 
adjacency-free bicharge. Then Bκ

n has a presentation as an ungraded algebra over k, with 
generators Ur for 0 ≤ r ≤ n − 1 subject to the following relations:

U2
r = −[2]Ur if 1 ≤ r ≤ n− 1,

UrUsUr = Ur if |r − s| = 1 and 1 ≤ r, s ≤ n− 1,

UrUs = UsUr if |r − s| > 1 and 0 ≤ r, s ≤ n− 1,

U1U0U1 = [m + 1]U1,

U2
0 = −[m]U0,

where [k] = [k]q = q−k+1 + q−k+3 + · · · + qk−1, q is an e′th primitive root of unity in k, 
and

e′ =
{

2e if e is even,
e otherwise.

Remark 1.4.

(1) The statement of [20, Corollary 3.6] uses the bicharge κ = (k, −k) (where k ∈ I such 
that 2k ≡ m (mod n)) and a ‘negative variant’ form of (16). To transform this into 
Theorem 1.3 it is necessary to shift the residues by −k (as mentioned in §1.1) and 
apply the isomorphism

R(0,−m)
n −→ R(0,m)

n

ψr 
−→ −ψr

yr 
−→ −yr
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e(i) 
−→ e(−i)

of cyclotomic KLR algebras with bicharges (0, −m) and (0, m).
(2) Theorem 1.3 is the most general version of what is commonly stated in the literature, 

but it can probably be extended to other cases as well. For example, when e equals 
the characteristic of k, Bκ

n behaves like the classical blob algebra over k with q = 1. 
In addition, adjacency-freeness of κ and the condition that 1 < m < e − 1 can 
potentially be relaxed, at the cost of modifying relation (16) (this is similar to what 
happens for the Temperley–Lieb algebra [20, Remark 3.7]).

1.3. Weights and multipartitions

In general the representation theory of KLR algebras is governed by the combinatorics 
of multipartitions, while that of the blob algebra is naturally governed by the geometry of 
a suitable weight lattice [18]. To understand the blob algebra in KLR terms it is enough 
to focus on one-column bipartitions.

A one-column bipartition of n is an ordered pair λ = (1λ1 , 1λ2) with λ1, λ2 ∈ Z≥0 and 
λ1 +λ2 = n. We write Λ(n) for the set of all one-column bipartitions of n. The mapping

Λ(n) −→ {−n,−n + 2, . . . , n− 2, n}
λ 
−→ λ1 − λ2

is a bijection between one-column bipartitions and the classical weight set for the blob 
algebra. For this reason we will usually call one-column bipartitions weights when working 
in a representation-theoretic context. For two weights λ, μ ∈ Λ(n) we write λ � μ (and 
say μ dominates λ) if |λ1 − λ2| > |μ1 − μ2| (following [17]).

The Young diagram for λ ∈ Λ(n) is defined to be the set

[λ] = {(r, 1) : 1 ≤ r ≤ λ1} ∪ {(r, 2) : 1 ≤ r ≤ λ2}

Elements of this set are usually called boxes, because the traditional way to depict Young 
diagrams is as a collection of boxes, e.g.

[(14, 15)] =

⎛
⎝ ,

⎞
⎠

A tableau of shape λ is a bijection [λ] → {1, 2, . . . , n}, which is usually depicted by 
writing each assignment inside the corresponding box, e.g.

⎛
⎝ ,

⎞
⎠
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A tableau is called standard if the entries in the boxes increase going down each column. 
A standard tableau t corresponds in a natural way to a sequence t|k ∈ Λ(k) of Young 
diagrams obtained by adding exactly one box at each stage. Such sequences are in bi-
jection with paths of length n on the global lattice of weights Z, where a path is just a 
function p : {0, 1, 2, . . . , n} → Z with p(0) = 0 and p(k + 1) − p(k) = ±1 for all integers 
0 ≤ k ≤ n − 1. Adding a box in the first column corresponds to a rightward (+1) step 
and vice versa.

We write tλ for the standard tableau of shape λ obtained by labelling the boxes of [λ]
with increasing entries ordered from left to right and from top to bottom like a book, 
e.g.

t(1
4,15) =

⎛
⎝ ,

⎞
⎠

The (κ-)residue of a box with coordinates (r, m) is defined to be κm + 1 − r ∈ I. 
The residue sequence res(t) of a tableau t is the sequence of residues of the boxes 
(t−1(1), t−1(2), . . . , t−1(n)). We write iλ instead of res(tλ) for the residue sequence of 
the dominant tableau tλ.

2. Cellularity of Bκ
n

Suppose t is a standard tableau of shape λ. Let dt ∈ Sn be the permutation such that 
dtt

λ = t.

Theorem 2.1 ([20, Theorem 6.8]). Fix a reduced expression dt for each dt over all λ ∈
Λ(n) and t ∈ Std(λ). The elements

ψst = ψds
e(iλ)ψd−1

t
∈ Bκ

n

over all λ ∈ Λ(n) and all s, t ∈ Std(λ) form a graded cellular basis for Bκ
n with respect 

to the partial order � on weights and the anti-involution ψ 
→ ψ.

For the precise definition of a graded cellular basis see [10, Definition 2.1]. An impor-
tant corollary, especially in conjunction with Lemma 1.2, is the following.

Corollary 2.2. Let i ∈ In. If there is no standard tableau t with (κ-)residue i, then 
e(i) = 0 in Bκ

n.

Remark 2.3.

(1) It can be shown that the basis element ψst does not depend on the choices of ds or 
dt. In particular the degree of this element has a combinatorial definition based on 
s and t (see Theorem 2.7 below).
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(2) The graded cellular structure on Bκ
n is in fact graded quasi-hereditary, which we 

will use frequently from now on. The idempotent-truncated algebras e(iλ)Bκ
ne(i

λ), 
studied extensively in [19,12] are also graded cellular but are not quasi-hereditary.

2.1. Graded cellular and quasi-hereditary algebras

We fix some notation for graded modules. If M =
⊕

j M
j is a graded vector space, 

we define the grade shift M〈k〉 for k ∈ Z by M〈k〉j = M j−k. For M, N graded Bκ
n-

modules, we call a degree-preserving homomorphism M → N homogeneous of degree 0. 
When we write HomBκ

n
(M, N) we always mean the space of ungraded homomorphisms. 

By convention any homomorphism we write with a grade shifted object is homogeneous 
of degree 0, but homomorphisms without grade shifts may be ungraded.

We recall some facts about graded cellular and quasi-hereditary algebras [10]. Let 
λ ∈ Λ(n), and write Bκ,�λ

n for the subspace spanned by all basis elements indexed by 
standard tableaux for weights μ � λ. Cellularity essentially means that for any standard 
tableaux s, t ∈ Std(λ), we can write the action of Bκ

n on the basis vector ψst modulo the 
subspace Bκ,�λ

n as

aψst =
∑

v∈Std(λ)

rsv(a)ψvt (mod Bκ,�λ
n )

where the scalars rsv(a) don’t depend on t. We can use these scalars to define a module 
Δ(λ) with basis ψs indexed by Std(λ), namely

aψs =
∑

v∈Std(λ)

rsv(a)ψv

We call such modules cell modules or Weyl modules. Graded cellularity means that there 
is a degree function on tableaux (see Theorem 2.7) which makes the basis {ψs} a homo-
geneous basis.

For any fixed standard tableaux a, b ∈ Std(λ), we can define a contravariant bilinear 
form on Δ(λ) by

ψasψtb = 〈ψs, ψt〉ψab (mod Bκ,�λ
n )

In fact this bilinear form does not depend on a or b. For a general cellular algebra the 
quotient Δ(λ)/ rad〈−, −〉 is either a simple module, which we call L(λ), or 0. The non-
zero quotients give a complete list of non-isomorphic simple modules up to grade shift. 
In our case, none of the quotients are zero because Bκ

n is quasi-hereditary. We write 
P (λ) for the graded projective cover of L(λ). For M a graded Bκ

n-module, we define the 
graded composition factor multiplicities

[M : L(λ)]v =
∑

[M : L(λ)〈k〉]vk ∈ Z≥0[v±1],

k
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where [M : L(λ)〈k〉] denotes the number of composition factors in a graded composition 
series isomorphic to L(λ)〈k〉. Similarly if M has a graded Weyl filtration, we define

(M : Δ(λ))v =
∑
k

(M : Δ(λ)〈k〉)vk ∈ Z≥0[v±1],

where (M : Δ(λ)〈k〉) denotes the number of subquotients in a graded Weyl filtration 
isomorphic to Δ(λ)〈k〉. For the ungraded counterparts of these multiplicities we use the 
same notation but without the subscript v.

As Bκ
n is quasi-hereditary, we also have the notion of a tilting module. A tilting module 

for Bκ
n is a module with a filtration by Weyl modules as well as a filtration by dual Weyl 

modules. For each weight λ, there is an indecomposable tilting module T (λ) of highest 
weight λ, and all indecomposable tilting modules are of this form [22]. In the graded 
setting this classification only gives a grading on T (λ) up to grade shift. We will fix the 
grading so that (T (λ) : Δ(λ))v = 1.

The anti-involution gives rise to a duality functor on Bκ
n-modules which reverses grade 

shift. The unshifted simple module L(λ) is self-dual, so the dual Weyl module ∇(λ) has 
socle isomorphic to L(λ). Similarly the unshifted injective envelope I(λ) is isomorphic to 
the dual of P (λ). By highest weight considerations T (λ) is self-dual. For h ∈ Z≥0[v±1], 
we write h = h(v−1).

2.2. Tower of recollement

For fixed m, e and varying n, the family of classical blob algebras (with presentation 
as in Theorem 1.3) has the structure of a tower of recollement [4, Example 1.2(ii)]. A 
tower of recollement consists of a collection of algebras and idempotents in these algebras 
which satisfy certain axioms, giving rise to several functors between module categories 
which pass representation-theoretic information between the algebras. Constructing the 
functors and verifying the axioms are both more easily accomplished in the classical 
presentation of the blob algebra. For this reason we will assume that Theorem 1.3 holds 
so that the tower of recollement structure transfers to {Bκ

n}n∈N . For the basic definitions 
and some examples see [4, §1], and [16, §3] for applications.

For each n ∈ N we have a pair of adjoint functors

ind : Bκ
n−mod −→ Bκ

n+1−mod, res : Bκ
n+1−mod −→ Bκ

n−mod

called induction and restriction respectively. As a right adjoint functor, restriction is 
left exact, and similarly induction is right exact. However, restriction also happens to 
be right exact as well. For λ ∈ Λ(n + 1) write λ = (1λ1 , 1λ2). If λ1 ≥ λ2 > 0 we have a 
short exact sequence

0 Δ(1λ1−1, 1λ2) res Δ(1λ1 , 1λ2) Δ(1λ1 , 1λ2−1) 0
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while res Δ(1n+1, ∅) = Δ(1n, ∅). When 0 < λ1 ≤ λ2 there are similar exact sequences 
with the two outer terms switched. Induction on Weyl modules also produces exact 
sequences in this way, but without a boundary exception.

We also have another pair of adjoint functors

G : Bκ
n−mod −→ Bκ

n+2−mod, F : Bκ
n+2−mod −→ Bκ

n−mod

called globalisation and localisation respectively. Again localisation is right exact as well 
as being left exact. For λ = (1λ1 , 1λ2) ∈ Λ(n + 2) we have

FΔ(1λ1 , 1λ2) =
{

Δ(1λ1−1, 1λ2−1) if λ1, λ2 ≥ 1,
0 otherwise.

There are similar formulae for the localisation of ∇(λ), L(λ), P (λ), I(λ), and T (λ) by 
[5, A1(4)], [5, Proposition A3.11], and [5, Lemma A4.5]. This implies the stability of 
decomposition numbers and Weyl filtration multiplicities of tilting modules across all n. 
In other words, for all n ∈ N and λ, μ ∈ Λ(n) with λ = (1λ1 , 1λ2) and μ = (1μ1 , 1μ2), 
both the decomposition number [Δ(μ) : L(λ)] and the Weyl filtration multiplicity (T (μ) :
Δ(λ)) only depend on λ1 − λ2 and μ1 − μ2 but not on n.

For λ = (1λ1 , 1λ2) ∈ Λ(n) globalisation behaves similarly for Weyl modules and 
projective modules, with

GΔ(1λ1 , 1λ2) = Δ(1λ1+1, 1λ2+1), GP (1λ1 , 1λ2) = P (1λ1+1, 1λ2+1)

but not for simple modules, dual Weyl modules, injective modules, or tilting modules. 
Globalisation is exact on the full subcategory of Δ-filtered modules [16, Proposition 4]. 
It also acts as a right inverse for localisation, i.e. F ◦ G is naturally isomorphic to the 
identity.

Finally we have the key relationship between induction/restriction and localisa-
tion/globalisation, which is the natural isomorphism

ind ∼= res ◦G.

In the case of Bκ
n, the tower of recollement structure behaves well with the anti-involution 

so the dual statement

res ∼= F ◦ ind

also holds.

2.3. Linkage principle

There is a linkage principle for the blob algebra, in terms of the following alcove 
geometry. Let W be the infinite dihedral group acting on Z generated by reflections sk
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about the integers (κ1 − κ2) + ke for any k ∈ Z. Each alcove consists of the integers 
(κ1 − κ2) + ke < j < (κ1 − κ2) + (k + 1)e lying between two adjacent reflection points. 
Weights lying inside an alcove are called regular, while those on a reflection point are 
singular. The fundamental alcove is the unique alcove containing the integer 0. Two 
integers are called linked if they are in the same W -orbit. For λ, μ ∈ Λ(n) and w ∈ W , 
we write μ = w(λ) and say that λ and μ are linked if their corresponding classical 
weights are linked, i.e. μ1 − μ2 = w(λ1 − λ2) where λ = (1λ1 , 1λ2) and μ = (1μ1 , 1μ2). 
We also write Wλ = {μ ∈ Λ(n) : w ∈ W, μ = w(λ)} for the linkage class of λ in Λ(n).

The group W also acts partially on paths in Z. For a path p, if p(k) is the reflection 
point (κ1 − κ2) + je, then we write

skj p(r) =
{
p(r) if r ≤ k,
sjp(r) if r > k.

In other words, skj p is the path obtained by reflecting p after the kth point. We say that 
two paths are linked if one can be obtained by a sequence of reflections of the other.

Write Stdλ(μ) for the set of standard tableaux of shape μ with residue sequence 
iλ. It turns out that this set can be described entirely in terms of the alcove geometry 
above, using the fact that weights and tableaux correspond to points in Z and paths in 
Z respectively.

Proposition 2.4 ([19, Lemma 4.7]). Let λ, μ ∈ Λ(n). Under the tableau-path bijection, 
the set Stdλ(μ) corresponds to paths which end at μ in the same linkage class as tλ.

Example 2.5. Suppose e = 4, κ = (0, 2), and n = 9. Let λ = (18, 1). The tableau tλ

corresponds to the rightmost path (coloured red in the online version of this article). 
This path crosses 2 alcove walls, so there are 22 = 4 different paths in the linkage class 
of tλ. The other 3 paths in this linkage class are illustrated in black from the point where 
they diverge from tλ.
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These paths correspond to the tableaux

Corollary 2.6. If [Δ(μ) : L(λ)] �= 0 then μ and λ are in the same linkage class.

A consequence of the above result is that if λ, μ ∈ Λ(n) are in different linkage 
classes, then they are also in different blocks. We will often restrict to the block(s) of 
simple modules parametrised by weights in a single linkage class.

The degrees of tableaux in Stdλ(μ) can also be calculated from their corresponding 
path. We call a subsequence of e consecutive steps in a path a wall-to-wall step if the 
steps start from a wall (i.e. a reflection point) and continue in a single direction until 
they reach another wall. For t ∈ Stdλ(μ) a standard tableau write w(t) for the number 
of wall-to-wall steps across the fundamental alcove.

Theorem 2.7 ([19, Theorem 4.9]). Let t ∈ Stdλ(μ). Let δ(t) be 1 if the first step after all 
wall-to-wall steps points toward the origin, and 0 otherwise. Then deg t = w(t) + δ(t).

Finally we describe the decomposition numbers in characteristic 0 in terms of the 
alcove geometry. For any regular weight λ, there exists a unique weight λfund in the 
fundamental alcove and wλ ∈ W such that wλ(λfund) = λ. For x, y ∈ W , define hy,x by

hy,x(v) =
{
v�(x)−�(y) if y ≤ x,
0 otherwise,

where � : W → Z≥0 and ≤ denote the length function and Bruhat ordering associated 
to the Coxeter group W . This is the Kazhdan–Lusztig polynomial associated to W (in 
the notation of [23]).

Theorem 2.8 ([19, Theorem 5.11]). Suppose k is a field of characteristic 0. Let λ, μ be 
two regular weights lying in the same linkage class. Then we have

[Δ(μ) : L(λ)]v = hwμ,wλ
(v).

There is also a singular version of this result. If λ is a singular weight, we label the 
weights in the linkage class of λ following [19, Example 5.5]. First set λ0 = λ. Suppose 
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that λ corresponds to a positive classical weight (i.e. a weight on the right side of the 
origin in our pictures). Working inductively, for k even (resp. odd) we define λk+1 to be 
the leftmost (resp. rightmost) weight in the linkage class distinct from λ0, λ1, . . . , λk. 
Similarly, when λ corresponds to a negative classical weight, for k even (resp. odd) we 
define λk+1 to be the rightmost (resp. leftmost) weight in the linkage class distinct from 
λ0, λ1, . . . , λk.

Theorem 2.9 ([19, Theorem 5.14]). Suppose k is a field of characteristic 0. Let λ be a 
singular weight. Then if λk is defined we have

[Δ(λk) : L(λ)]v = vk.

For the rest of this paper we will replace the dominance order � on weights with the 
following coarser partial order:

λ ≤ μ ⇐⇒ μ ∈ Wλ and
{
wλ ≥ wμ when λ,μ are regular,
μ = λk for some k ≥ 0 when λ,μ are singular.

This partial order (which we will call the Bruhat order) is more closely related to the 
linkage principle and as a result, to the representation theory of Bκ

n. All of the graded 
cellularity statements in this section involving the dominance order still hold under the 
Bruhat order, but many of the statements of later results rely on the Bruhat order.

For example, in characteristic 0 the Bruhat order determines the composition factor 
multiplicities in the layers of the radical or socle series of Weyl modules [17, §9]. This is 
quite a strong statement; in what follows we will only need to know the socles of Weyl 
modules, which are determined by minimal weights in the Bruhat order.

Theorem 2.10 ([17, §9]). Suppose k is a field of characteristic 0. Let μ ∈ Λ(n). Then we 
have

soc Δ(μ) =
⊕

λ∈Λ(n)
λ∈Wμ

λ minimal

L(λ).

In particular, soc Δ(μ) only depends on n and the linkage class of μ.

Remark 2.11. In general, it is easier to use tableaux when working with permutations of 
the form dt for some tableau t of shape λ, as one can read off dt directly from the two 
tableaux t and tλ. By contrast, it is easier to use paths in order to apply Proposition 2.4. 
We will mostly use tableaux in the arguments below, but the careful reader may use the 
tableau-path bijection in order to translate our arguments into the language of paths if 
necessary.
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3. Bases for projective indecomposable modules

For the rest of this paper, we will assume that k is a field of characteristic 0. Most of 
the previous results are known to hold in some form for the classical blob algebra. To 
proceed further we must make use of the KLR-style presentation of Bκ

n, and in particular 
the grading.

3.1. A Temperley–Lieb subalgebra

As Bκ
n is graded, it has a subalgebra of degree 0 elements. An idempotent truncation 

of this subalgebra was classified in [12, §5.4–5.5]. We summarise their results below.

Definition 3.1. Let λ = (1λ1 , 1λ2) ∈ Λ(n). Suppose the weight λ does not lie in the 
interior of the fundamental alcove. We define fλ to be the minimal positive integer such 
that the fλth point of the path corresponding to tλ lies on a wall of the fundamental 
alcove. In other words,

fλ =
{

min({2λ2 + (κ1 − κ2) + je : j ∈ Z} ∩N) if λ1 ≥ λ2,
min({2λ1 − (κ1 − κ2) + je : j ∈ Z} ∩N) if λ1 < λ2.

(17)

For j ∈ N write f(j) = fλ + je. For all j ∈ N such that f(j) ≤ n − e we define the 
diamond of λ at position f(j) to be

Uλ
j = (ψf(j))(ψf(j)−1ψf(j)+1)(ψf(j)−2ψf(j)ψf(j)+2) · · ·

· · · (ψf(j)−e+1ψf(j)−e+3 · · ·ψf(j)+e−3ψf(j)+e−1) · · ·

· · · (ψf(j)−2ψf(j)ψf(j)+2)(ψf(j)−1ψf(j)+1)(ψf(j))e(iλ). (18)

The name ‘diamond’ comes from the corresponding KLR diagram for this element, 
e.g.
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for e = 6. The cyclotomic KLR algebra versions of these elements previously appeared 
in [11, (4.2)], while the effect of similar permutations on paths was seen even earlier, 
e.g. [13, Figure 4].

Theorem 3.2 ([12, Theorem 5.24]). Let λ ∈ Λ(n). The diamonds of weight λ generate the 
degree 0 subalgebra of e(iλ)Bκ

ne(i
λ). This subalgebra is isomorphic to a Temperley–Lieb 

algebra with loop parameter 2(−1)e−1, with the diamond at position fλ+je corresponding 
to the standard Temperley–Lieb diagrammatic generator at index j. In other words, the 
diamonds of weight λ satisfy the relations

Uλ
i U

λ
j = Uλ

j U
λ
i when |i− j| > 1,

Uλ
i U

λ
j U

λ
i = Uλ

i when |i− j| = 1,

(Uλ
i )2 = 2(−1)e−1Uλ

i for all i,

and this gives a complete presentation of the subalgebra generated by them.

Recall that in quantum characteristic 0 the Temperley–Lieb algebra is semisimple. The 
central idempotent corresponding to the trivial module is sometimes called the Jones–
Wenzl projector. We write JWλ for the corresponding idempotent in e(iλ)Bκ

ne(i
λ). In 

our notation, JWλ is the unique element of the form

JWλ = e(iλ) +
∑

monomials U �= e(iλ)

cUU

(where the sum is over monomials in the generators {Uλ
j }) such that Uλ

j JWλ = 0 for 
all j.

Lemma 3.3. Let λ ∈ Λ(n). Then P (λ) ∼= Bκ
nJWλ.

Proof. Let B′ = e(iλ)Bκ
ne(i

λ). The algebra B′ is graded in non-negative degree by 
Theorem 2.7 and thus all its idempotents have degree 0 and lie in the Temperley–
Lieb subalgebra. The idempotent JWλ is a primitive idempotent for the Temperley–
Lieb subalgebra, so JWλ is also a primitive idempotent for B′. As B′ is an idempotent 
truncation of Bκ

n, it follows that JWλ is a primitive idempotent for Bκ
n, and thus Bκ

nJWλ

is an indecomposable projective Bκ
n-module.

Now let P = Bκ
nJWλ, and consider the indecomposable projective B′-module P ′ =

e(iλ)P . We claim that P ′ = e(iλ)P (λ) and thus P = P (λ). We first observe that 
Uλ

1 ∈ Bκ,>λ
n by [12, Lemma 5.20], so

Uj = UjUj−1Uj = · · · = UjUj−1 · · ·U2U1U2 · · ·Uj−1 ∈ Bκ,>λ
n
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for all j. Since Bκ,>λ
n annihilates L(λ) we have

Uλ
j e(i

λ)L(λ) = Uλ
j L(λ) = 0.

This shows that JWλe(iλ)L(λ) = e(iλ)L(λ). As

HomB′(P ′, e(iλ)L(λ)) = HomB′(B′JWλ, e(iλ)L(λ))

= JWλe(iλ)L(λ)

= e(iλ)L(λ)

�= 0

this completes the proof. �

3.2. Maximal degree tableaux

The following key combinatorial lemma constructs maximal degree tableaux, which 
are of fundamental importance in the characteristic 0 representation theory of Bκ

n.

Lemma 3.4. Let λ ∈ Λ(n) be a weight. For each μ ∈ Wλ with λ ≤ μ, there is a unique 
tableau tμλ ∈ Stdλ(μ) of maximal degree

deg tμλ =
{
�(wλ) − �(wμ) if λ is regular,
k if λ is singular and μ = λk.

Proof. Let t ∈ Stdλ(μ), and write d for �(wλ) − �(wμ). From Theorem 2.7 recall that 
deg t is either w(t) or w(t) + 1, where w(t) is the number of wall-to-wall steps inside 
the fundamental alcove for the path corresponding to t. By Proposition 2.4 t lies in the 
linkage class of tλ. The path corresponding to tλ contains �(wλ) − 1 wall-to-wall steps, 
whereas any path with endpoint μ must have at least �(wμ) −1 wall-to-wall steps outside 
the fundamental alcove to get there. Thus w(t) is bounded above by d.

There are four cases, according to the parity of d and whether λ and μ lie on the 
same side of the origin or not. We will focus on one of these cases; the other three are 
similar. Suppose d is even and that λ and μ both lie on the same side of the origin. First 
we note that since paths to λ and μ must eventually pass through the same wall of the 
fundamental alcove, w(t) is even for all t ∈ Stdλ(μ). There exists a tableau tμλ ∈ Stdλ(μ)
with w(tμλ) = d maximal, e.g.
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Moreover, this tableau is unique: for any such path, the wall-to-wall steps inside the 
fundamental alcove must occur as early as possible. If not, the path would have to leave 
and then return to the fundamental alcove, wasting wall-to-wall steps in the process. 
Finally, tμλ has maximal degree too. From the picture above deg tμλ = w(tμλ), and for all 
other tableaux t we have

deg t ≤ w(t) + 1 ≤ (w(tμλ) − 2) + 1 < deg tμλ �
Remark 3.5. An alternative proof of this result uses [12, Theorem 4.9] to reduce the 
problem of determining graded dimensions of Weyl modules to a calculation in the 
Iwahori–Hecke algebra corresponding to W . The result follows from the observation 
that the ‘Bott–Samelson’ elements (i.e. products of simple Kazhdan–Lusztig generators) 
in this algebra have monic polynomial coefficients when written in terms of the standard 
basis.

The following lemma shows that we can use maximal degree tableaux to parametrise 
a basis for P (λ) = Bκ

nJWλ.

Lemma 3.6. Let λ ∈ Λ(n). The set

{ψtt
μ
λ
JWλ : μ ∈ Wλ, t ∈ Std(μ)}

form a basis for P (λ) = Bκ
nJWλ.

Proof. It is immediately clear that the elements

{ψtsJWλ : μ ∈ Wλ, s ∈ Stdλ(μ), t ∈ Std(μ)}
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span P (λ) = Bκ
nJWλ. Fixing μ ∈ Wλ and s ∈ Stdλ(μ), recall that the images of the 

cellular basis elements

{ψts : t ∈ Std(μ)}

in Bκ
n/B

κ,>μ
n form a basis of a submodule isomorphic to Δ(μ)〈deg s〉. Every such Weyl 

module is indecomposable, so the image of

{ψtsJWλ : t ∈ Std(μ)}

in Bκ
nJWλ/Bκ,>μ

n JWλ is either a basis of Δ(μ)〈deg s〉 or 0. By Theorems 2.8 and 2.9
and Brauer–Humphreys reciprocity, we must get the zero module if deg s �= deg tμλ. When 
this occurs, for all t ∈ Std(μ) we have

ψtsJWλ ∈ Bκ,>μ
n JWλ ≤ Bκ,>μ

n

so

ψtsJWλ =
∑
μ′>μ

t
′,s′∈Std(μ′)

ct′s′ψt′s′

for some coefficients ct′s′ ∈ k. Multiplying by JWλ, we obtain

ψtsJWλ = ψts(JWλ)2 =
∑
μ′>μ

t
′,s′∈Std(μ′)

ctsψt′s′JWλ,

and we can repeat the argument for each μ′ > μ and s′ ∈ Std(μ′) with s′ �= t
μ′

λ . Contin-
uing in this fashion, we conclude that ψtsJWλ can be expressed as a linear combination 
of elements in the given set, i.e. the given set spans Bκ

nJWλ. Linear independence follows 
by a dimension count. �
4. Singular projective modules

The aim of this section is to determine the socles of the indecomposable projective 
modules associated to minimal singular weights — Theorem 4.12 and Corollary 4.13. 
This turns out to be enough to completely determine the structure of these modules. 
The result will then be used in §5.1 to address the corresponding (harder) non-singular 
cases.

Our general strategy is to identify possible generators for the socle in Lemma 4.1 and 
then to rule out all but one of them via direct computation. The computation involves the 
Jones–Wenzl projector, which is difficult to work with directly because in the standard 
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basis it is a sum with many terms. Luckily nearly all of these terms combine or vanish 
in the computation when multiplied by certain cellular basis elements.

In this section we will assume that n ≡ κ1 −κ2 (mod e), or in other words that there 
is a wall at n. Fix η = (1n, ∅) ∈ Λ(n) and let m ∈ N such that n = fη +me (see (17) for 
a definition of fη). Recall how the linkage class of η consists of the weights ηj for some 
non-negative integers j. The maximal weight in this linkage class is ηm, which is on a 
wall of the fundamental alcove. Note that fηj

= fη + je, because the distance from ηj

to the nearest fundamental alcove wall is (m − j)e steps.

4.1. Cellular basis factorization

We begin by identifying possible candidates for the socle of P (η).

Lemma 4.1. If socP (η) contains a copy of L(η)〈2k〉 for some k ≥ 0, then it must be the 
subspace

kJWηψ
t
ηk
η t

ηk
η

JWη ≤ Bκ
nJWη = P (η).

Proof. By Lemma 3.6 the module P (η) = Bκ
nJWη has a basis

{ψ
tt

ηk
η

JWη : 0 ≤ k ≤ m, t ∈ Std(ηk)},

so JWηBκ
nJWη is spanned by

{JWηψ
tt

ηk
η

JWη : 0 ≤ k ≤ m, t ∈ Stdη(ηk)}.

Now factor ψ
tt

ηk
η

as ψttηkψtηk t
ηk
η

. Applying Lemma 3.6 again, JWηψttηk lies in the span 
of

{JWηψ
t
ηl
η s

: k ≤ l ≤ m, s ∈ Stdηk
(ηl), deg t = l + deg s},

where we have further restricted the tableau s by residue and degree considerations. But

k ≤ l + deg s = deg t ≤ k

with equality if and only if l = k and s = tηk . Thus JWηBκ
nJWη is spanned by

{JWηψ
t
ηk
η t

ηk
η

JWη : 0 ≤ k ≤ m}

and the result follows immediately. �
The product in Lemma 4.1 involves cellular basis elements parametrised by maximal 

degree tableaux, and the Jones–Wenzl projector. We first focus on factorizing these 
cellular basis elements in a helpful way.
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Proposition 4.2. For all integers 0 ≤ j ≤ k ≤ m we have

ψ
tηk t

ηk
ηj

= xjxj+1 · · ·xk−1ψfη+jeψfη+(j+1)e · · ·ψfη+(k−1)ee(iηj )

for some elements xr ∈ Bκ
n (with j ≤ r < k) which satisfy the following properties:

(i) for fixed r the element xr does not depend on j or k;
(ii) for r �= s, xrxs = xsxr and xrψfη+se = ψfη+sexr;
(iii) for each j ≤ r < k we have

xrxre(iηk) = e(iηk),

xrxre(sfη+rei
ηj ) = e(sfη+rei

ηj ).

Proof. Let d = d
t
ηk
ηj

. Recall that d is the permutation which maps tηk to tηk
ηj

.
For 0 ≤ l ≤ m, write ηl = (1ηl,1 , 1ηl,2) and set rl = 2 min(ηl,1, ηl,2). From (17) it is 

clear that

fηl
= fη + le =

{
rl + fη if l is even,
rl + (e− fη) if l is odd.

This means that

rl =
{
le if l is even,
(l − 1)e + 2fη if l is odd.

Thus the integers 1 ≤ r ≤ rj lie in the same boxes in the tableaux tηj , tηk
ηj

, and tηk so 
we have d(r) = r. Similarly when rk < r ≤ n, r is in the same box in both tηk and tηk

ηj

so d(r) = r here as well.
For j ≤ l < k, the boxes in tηk

ηj
with labels rl < r ≤ rl+1 form the skew tableau

if l is even,
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if l is odd,

while the same boxes in tηk form the skew tableau

if l is even,

if l is odd.

This of course means that d restricted to rl < r ≤ rl+1 is still a permutation dl. In fact 
dl corresponds to a triangular portion of the lower half of a ‘diamond permutation’:
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The easiest way to see this is to apply the ‘layers’ (each a product of several commuting 
transpositions) in turn to the skew tableaux above. For example, the first (fη−1) layers 
permute the skew tableau with fη rows as follows:

The number of layers in the triangle is either fη − 1 or e − fη depending on parity. But 
2 ≤ fη ≤ e −2, so in both cases the corresponding diagram in the blob algebra factors as 
xlψfη+lee(iηj ) with e(iηk)xl generated by transpositions of degree 0. Properties (i)–(iii)
follow immediately. �
Example 4.3. Let n = 21, e = 6 and κ = (0, 3). The weight η = (121, ∅) is singular 
because 21 ≡ 3 − 0 (mod 6). Observe that η1 = (13, 118) and that η3 = (19, 112). Then

ψtη3 t
η3
η1

= .
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We also have

e(iη3)x1x2 = .

Some immediate consequences of Proposition 4.2 include the following corollaries.

Corollary 4.4. For all integers 0 ≤ j ≤ k ≤ l ≤ m we have ψ
tηl t

ηl
ηk
ψ
tηk t

ηk
ηj

= ψ
tηl t

ηl
ηj

.

Corollary 4.5. For all integers 0 ≤ j ≤ k ≤ m we have

ψ
t
ηk
ηj

t
ηk
ηj

= ψ2
fη+jeψ

2
fη+(j+1)e · · ·ψ2

fη+(k−1)ee(i
ηj ).

It will also be important to know later that certain products vanish in Bκ
n. Somewhat 

surprisingly this can happen even when the total degree is small.

Lemma 4.6. We have

ψtη1 t
η1
η
ψt

η1
η tη1 = ψ2

fηe(sfηi
η) = 0.

Proof. From Proposition 4.2 it is clear that the first product above vanishes if and only 
if the second product vanishes. We expand the first product by pulling apart the double 
transposition of degree 2 and rewriting as a difference of dotted strings. In the first term, 
the left string with its dot can be pulled all the way to the left, because the residues of 
all the strings that it passes through are distinct. In the second term, the dot on the 
right string can jump almost all the way to the left, slide down a string, and then make 
one final jump to the leftmost string. Dots on the left vanish in Bκ

n, so we are done. The 
diagrams below depict this process when fη = 4.

= −

= −
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= −

= 0 − 0. �
4.2. Diamond simplification

By Lemma 4.1, determining the socle of P (η) will necessitate calculations involving 
JWη. The next few lemmas give some methods for reducing the workload by eliminating 
diamonds.

Lemma 4.7. For all k we have

ψfη+(k−1)eU
η
k ψfη+(k−1)e = ±ψ2

fη+kee(sfη+(k−1)ei
η).

Proof. Apply [12, Lemma 5.16] several times across the diamond. The remaining trans-
positions are all of degree 0 except for the degree 1 transpositions at the top and bottom. 
The degree 0 transpositions cancel out and the result follows. The diagrams below depict 
what happens when e = 6.

= − =

= − = · · ·

· · · = (−1)e = (−1)e

�
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Lemma 4.8. For all k we have

Uη
k U

η
k−1ψ

2
fη+ke

= ±Uη
k ψ

2
fη+(k−1)e

.

Proof. This follows immediately from a variant of Lemma 4.7, which is proved in the 
same way.

= (−1)e

�
Lemma 4.9. For all 1 < k < m we have

Uη
k−1ψt

ηk
η t

ηk
η

= 0.

Proof. Use Proposition 4.2 to rewrite ψ
t
ηk
η t

ηk
η

as a product of double transpositions. 
Expand the rightmost double transposition as a difference of dotted strings. First we 
show that these dots can ‘migrate’ leftwards until they lie on top of the next pair of 
transpositions. In the first term, the dot on the left string can jump until it is on the 
right string above this double transposition. In the second term, the dot on the right 
string can slide along the southwest border of the diamond, jump left one string and 
slide until it is in place on the left string above the double transposition.
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Next, we show we can continue this migration process leftwards without the diamond. 
As before, the dot on the left string above the double transposition can jump several 
strings leftwards until it is on the right string above the next double transposition. For 
the dot on the right string, we replace the both pairs of transpositions with pairs of 
maximally sized triangles, as seen in the proof of Proposition 4.2. This dot then slides 
southwest along its string, jumps one string, and slides northwest until it is in the correct 
position.

Note that in both of the figures above we are only drawing a portion of the complete 
diagram.

Finally we end up with a difference of dotted strings for the leftmost double transpo-
sition. But we can replace this difference with another double transposition. Applying 
Lemma 4.6 gives the result. �
4.3. Socle calculation

We pool together our previous results into one grand calculation to identify the socle 
of P (η). The heart of the argument is to show that certain products of JWη with cellular 
basis elements do not vanish in Bκ

n. This is potentially extremely difficult, as the number 
of summands when JWη is written in the standard monomial basis grows very quickly. 
Thankfully many of these monomials end up vanishing in the product. For r ≤ s write 
Uη
r,s = Uη

r U
η
r+1 · · ·Uη

s . First, we identify a non-vanishing monomial in the product.

Theorem 4.10. Let r ≤ s. If

ψtη1 t
η1Uη

r,sψt
ηk t

ηk JWη �= 0

η η η
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then (r, s) = (1, k). In this case, we have

ψtη1 t
η1
η
Uη

1,kψt
ηk
η t

ηk
η

JWη = ±ψ
t
ηk+1
η1 t

ηk+1
η

JWη.

Proof. When r > 1, we have

ψtη1 t
η1
η
Uη
r = U

η1
r−1ψtη1 t

η1
η

(19)

by Proposition 4.2. Similarly when r > k, we have

Uη
r ψt

ηk
η t

ηk
η

= ψ
t
ηk
η t

ηk
η
Uη
r . (20)

When 1 < r ≤ s we have

ψtη1 t
η1
η
Uη
r,sψt

ηk
η t

ηk
η

= U
η1
r−1,s−1ψtη1 t

η1
η
ψ
t
ηk
η t

ηk
η

= U
η1
r−1,s−1ψtη1 t

η1
η
ψ2
fηψ

2
fη+eψ

2
fη+2e · · ·ψ2

fη+(k−1)e

= U
η1
r−1,s−1ψtη1 t

η1
η
ψt

η1
η t

η1
η
ψ2
fη+eψ

2
fη+2e · · ·ψ2

fη+(k−1)e

= 0

using (19), Corollary 4.5, and Lemma 4.6. Similarly when r ≤ s ≤ k − 1 this expression 
vanishes by Corollary 4.5 and Lemma 4.9. Finally

Uη
r,sψt

ηk
η t

ηk
η

JWη = Uη
r,s−1ψt

ηk
η t

ηk
η
Uη
s JWη = 0

if s > k by (20) and the defining property of JWη. Putting this all together, if

ψtη1 t
η1
η
Uη
r,sψt

ηk
η t

ηk
η

JWη �= 0

then r = 1 and s = k.
Using Corollary 4.5 and Lemma 4.8, we observe that

ψtη1 t
η1
η
Uη

1,kψt
ηk
η t

ηk
η

JWη =

= ψtη1 t
η1
η
Uη

1,k−2U
η
k−1U

η
k ψ

2
fη+(k−1)eψ

2
fη+(k−2)e · · ·ψ2

fηJWη

= ±ψtη1 t
η1
η
Uη

1,k−2U
η
k−1U

η
k U

η
k−1ψ

2
fη+keψ

2
fη+(k−2)eψ

2
fη+(k−3)e · · ·ψ2

fηJWη

= ±ψtη1 t
η1
η
Uη

1,k−1ψ
2
fη+(k−2)eψ

2
fη+(k−3)e · · ·ψ2

fηψ
2
fη+keJWη.

Apply this several times to obtain

ψtη1 t
η1
η
Uη

1,kψt
ηk
η t

ηk
η

JWη = ±ψtη1 t
η1
η
Uη

1 ψ
2
fηψ

2
fη+2eψ

2
fη+3e · · ·ψ2

fη+keJWη.

Then by Lemma 4.7 and Corollaries 4.4 and 4.5 this is equal to
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± ψtη1 t
η1
η
ψ2
fη+eψ

2
fη+2eψ

2
fη+3e · · ·ψ2

fη+keJWη =

= ±ψ2
fη+eψ

2
fη+2eψ

2
fη+3e · · ·ψ2

fη+keψtη1 t
η1
η

JWη

= ±ψ
t
ηk+1
η1 tη1ψtη1 t

ηk+1
η1

ψtη1 t
η1
η

JWη

= ±ψ
t
ηk+1
η1 t

ηk+1
η

JWη. �
Next, we show that other monomials wind up in an ideal of Bκ

n.

Theorem 4.11. Let U be a monomial in the generators of the Temperley–Lieb subalgebra. 
If U �= Uη

1,k then

ψtη1 t
η1
η
Uψ

t
ηk
η t

ηk
η

JWη ∈ B
κ,>ηk+1
n JWη.

Proof. Every monomial in the generators of the Temperley–Lieb subalgebra is a scalar 
multiple of a monomial of the form Uη

r1,s1U
η
r2,s2 · · ·Uη

rp,sp for some strictly decreasing 
sequences r1 > r2 > · · · > rp and s1 > s2 > · · · > sp of some length p ≥ 0 with rj ≤ sj
for all j [14, 6.5.2]. Suppose U �= U1,k is a monomial of this form such that

ψtη1 t
η1
η
Uψ

t
ηk
η t

ηk
η

JWη �= 0.

First of all we must have p ≥ 1 by Lemma 4.6. Since rj > rp ≥ 1 and sj > sp ≥ rp ≥ 1
for all 1 ≤ j < p, we can apply (19) to the expression above:

ψtη1 t
η1
η
Uη
r1,s1U

η
r2,s2 · · ·U

η
rp−1,sp−1

Uη
rp,spψt

ηk
η t

ηk
η

JWη =

= U
η1
r1−1,s1−1U

η1
r2−1,s2−1 · · ·U

η1
rp−1−1,sp−1−1ψtη1 t

η1
η
Uη
rp,spψt

ηk
η t

ηk
η

JWη.

Theorem 4.10 then implies that rp = 1 and sp = k. Assuming U �= U1,k, we must have 
p > 1.

Now suppose sp−1 > k+1. Applying Theorem 4.10 again as well as (19) and (20), we 
observe that

U
η1
sp−1−1ψtη1 t

η1
η
Uη

1,kψt
ηk
η t

ηk
η

JWη = ±U
η1
sp−1−1ψt

ηk+1
η1 t

ηk+1
η

JWη

= ±ψ
t
ηk+1
η1 t

ηk+1
η

Uη
sp−1

JWη

= 0.

This is a factor of the previous expression, so it follows that sp−1 = k + 1. Thus it is 
enough to show that

ψtη1 t
η1
η
Uη
k+1U

η
1,kψt

ηk
η t

ηk
η

JWη = ±U
η1
k ψ

t
ηk+1
η1 t

ηk+1
η

JWη ∈ B
κ,>ηk+1
n JWη.

Using Corollaries 4.4 and 4.5 this is equal to
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±U
η1
k ψ2

fη+keψ
2
fη+(k−1)e · · ·ψ2

fη+eψtη1 t
η1
η

JWη

In the proof of Proposition 4.2 we showed that Uη1
k = zk+1xk+1ψfη+(k+1)e for some 

zk+1 ∈ Bκ
n. Thus we obtain

±U
η1
k ψ2

fη+keψ
2
fη+(k−1)e · · ·ψ2

fη+eψtη1 t
η1
η

JWη ∈ Bκ
nψt

ηk+2 t
ηk+2
η

JWη

≤ B
κ,>ηk+1
n JWη. �

Finally we are in a position to calculate the socle of P (η).

Theorem 4.12. We have socP (η) = L(η)〈2m〉

Proof. By Theorem 2.10 the socle of every Weyl module in the linkage class is L(η). Since 
P (η) has a Weyl filtration, it is clear that its socle is the direct sum of copies of L(η). 
The graded decomposition numbers for singular weights (from Theorem 2.9) indicate 
that the socle can contain at most one copy of L(η)〈2k〉 for each integer 0 ≤ k ≤ j and 
no copies of L(η) in odd degree. The submodule L(η) ≤ Δ(ηm) ≤ P (η) gives one copy 
of L(η) of degree 2m in the socle. By Lemma 4.1, if the socle does contain a copy of 
L(η)〈2k〉 for some k < m, then it must be spanned by

JWηψ
t
ηk
η t

ηk
η

JWη.

We will prove that this vector does not generate a copy of L(η) in the socle by showing 
that

ψtη1 t
η1
η

JWηψ
t
ηk
η t

ηk
η

JWη �≡ 0 (mod B
κ,>ηj
n JWη).

Write JWη as a sum of monomials. It is known that the coefficient of Uη
1,k in JWη is 

non-zero (see e.g. [6, Proposition 3.10]), so we may write

JWη = cUη
1,k +

∑
monomials U �= Uη

1,k

cUU

where c, cU ∈ k and c �= 0. Then using Theorems 4.10 and 4.11 we obtain

ψtη1 t
η1
η

JWηψ
t
ηk
η t

ηk
η

JWη = ψtη1 t
η1
η

⎛
⎝cUη

1,k +
∑

monomials U �= Uη
1,k

cUU

⎞
⎠ψ

t
ηk
η t

ηk
η

JWη

≡ ψ
t
ηk+1
η1 t

ηk+1
η

JWη (mod B
κ,>ηk+1
n JWη).

By the proof of Lemma 3.6, we have ψ
t
ηk+1
η1 t

ηk+1
η

JWη /∈ B
κ,>ηk+1
n JWη, which completes 

the proof. �
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Applying the globalisation functor, we see that GL(η) = GΔ(η) = Δ(1n+1, 1) and 
GP (η) = P (1n+1, 1). By Theorem 2.10, the socle of all Weyl modules in the linkage class 
of (1n+1, 1) is L(1n+1, 1). As P (1n+1, 1) has a Weyl filtration this means that its socle is 
a direct sum of copies of L(1n+1, 1). Using the localisation-globalisation adjunction we 
obtain

HomBκ
n+2(GL(η), GP (η)) ∼= HomBκ

n
(L(η), FGP (η)) = HomBκ

n
(L(η), P (η)),

so these Hom-spaces are all 1-dimensional by Theorem 4.12. This immediately implies 
that the ungraded socle of P (1n+1, 1) is L(1n+1, 1). Repeated globalisation in this manner 
allows us to drop our assumption on n and extend (the ungraded form of) our result 
to all minimal singular weights to the right of the origin. A similar argument using the 
analogous “left-sided” version of Theorem 4.12 for (∅, 1n) with −n ≡ κ1 − κ2 (mod e)
gives the same result for all minimal singular weights to the left of the origin.

To calculate the correct grade shift, we note that the simple socle of any singular 
projective indecomposable module coincides with the socle of the maximal weight Weyl 
module in a Weyl filtration. For a singular weight λ ∈ Λ(n), write λmin, λmax ∈ Λ(n)
for the unique minimal and maximal weights respectively in the same linkage class. The 
total grade shift is simply the sum of the grade shift of Δ(λmax) in the Weyl filtration of 
P (λ) and the grade shift of L(λmin) in the composition series of Δ(λmax). Both of these 
grade shifts are determined by the graded decomposition numbers in Theorem 2.9, or 
equivalently by the degrees of certain maximal degree tableaux using Lemma 3.4. Thus 
we have proved the following.

Corollary 4.13. Let n be arbitrary, and let λ ∈ Λ(n) be a singular weight. Then we have

socP (λ) = L(λmin)〈deg tλmax
λ + deg tλmax

λmin
〉.

Remark 4.14. In fact, one can prove a stronger result; namely, that the singular projective 
indecomposable modules embed inside one another. More precisely, for a singular weight 
λ ∈ Λ(n) and μ ≤ λ we have

O<λ(P (μ)) ∼= P (λ)〈deg tλμ〉.

(See the discussion before Theorem 5.5 for a description of the notation O<λ.)

5. Main results

5.1. Regular projective modules

We introduce some useful weight terminology. Let λ ∈ Λ(n). If the linkage class of 
λ has a unique λ′ ∈ Λ(n) which is incomparable to λ in the Bruhat order then we say 
that λ is paired. Otherwise we call λ unpaired.
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Example 5.1. Let e = 5 and κ = (0, 3).

• Suppose n = 14. The weight λ14 = (19, 15) in Λ(14) is paired, because there is another 
weight λ′

14 = (14, 110) in its linkage class to which it is incomparable. On the other 
hand, the weight μ14 = (114, ∅) is unpaired because it is comparable to every weight 
in its linkage class (more precisely, it is a global minimum for Wμ14).

• Now suppose n = 16. The weight λ16 = (110, 16) in Λ(16) is still paired as above. 
Moreover, the weight μ16 = (115, 1) is also paired because it is incomparable to the 
weight (∅, 116) ∈ Λ(16) in the same linkage class.

From the example we observe that being paired or unpaired is a property of biparti-
tions and not of classical weights. A regular weight λ ∈ Λ(n) is unpaired if and only if it 
is a global maximum (i.e. is contained in the fundamental alcove) or a global minimum 
in Wλ. On the other hand, every singular weight in Λ(n) is unpaired because singular 
linkage classes are totally ordered.

Lemma 5.2. Let λ = (1λ1 , 1λ2) ∈ Λ(n) be a regular weight. Then λ is unpaired if and 
only if �(wλ) = 0 or |λ1 − λ2| < 2�(wλ)e − n.

Proof. Suppose that λ is not contained in the fundamental alcove and that λ1 > λ2. 
Let w′

λ be the unique element of W such that �(w′
λ) = �(wλ) but w′

λ �= wλ. Since 
�(w′

λw
−1
λ ) = 2�(wλ), the unique incomparable classical weight in the global linkage class 

of (λ1 − λ2) is (λ1 − λ2) − 2�(wλ)e, which does not correspond to a weight in Λ(n) if it 
is less than −n. The case where λ1 < λ2 is similar. �

Generalising our singular terminology, for a weight λ ∈ Λ(n) write λmin ∈ Λ(n) for 
some minimal weight in the linkage class of λ and λmax ∈ Λ(n) for the unique maximal 
weight in the same linkage class. For λ regular it is evident that λmax = λfund. We now 
can extend Corollary 4.13 to all weights.

Theorem 5.3. Let λ, μ ∈ Λ(n) with λ ≤ μ. We have

socP (λ) =
{

(L(λmin) ⊕ L(λ′
min))〈deg tλmax

λ + deg tλmax
λmin

〉 if λmin is paired,
L(λmin)〈deg tλmax

λ + deg tλmax
λmin

〉 if λmin is unpaired.

Proof. We will prove the ungraded result first, and then calculate the correct degree 
shift using knowledge of the graded decomposition numbers (Theorem 2.8). We will also 
assume that λ is regular, as the singular case is just Corollary 4.13.

Note that for any μ ≥ λ, the ungraded socle of Δ(μ) is

{
L(λmin) ⊕ L(λ′

min) if λmin is paired,
L(λ ) if λ is unpaired.
min min
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As P (λ) is filtered by Weyl modules its socle may only contain copies of these simple 
modules.

Write λ = (1λ1 , 1λ2) and without loss of generality suppose λ1 > λ2. If λ lies in the 
fundamental alcove, then P (λ) = Δ(λ) and the result follows by Theorem 2.10, so we 
will assume that λ does not lie in the fundamental alcove. Take k ∈ N minimal such that 
λ(0) = (1λ1 , 1λ2+k) ∈ Λ(n + k) is singular, and let λ(1) = (1λ1 , 1λ2+k−1) ∈ Λ(n + k − 1). 
It is evident that λ and λ(1) lie in the same alcove, and that λ(0) lies on a wall of this 
alcove. There is also a unique minimal weight λ(1)

min ∈ Λ(n + k− 1) in the linkage class of 
λ(1) whose classical weight is only 1 away from λ(0)

min. Write prλ(0) for the functor which 
projects modules and homomorphisms onto the block(s) of simple modules parametrised 
by weights in the linkage class of λ(0). We observe that

prλ(0)(ind Δ(λ(1)
min)) = Δ(λ(0)

min),

and if λ(1)
min is paired, then

prλ(0)(ind Δ((λ(1)
min)′)) = Δ((λ(0)

min)1).

Moreover, we have

resP (λ(0)) ∼= F (indP (λ(0))) = FP (1λ1+1, 1λ2+k) = P (λ(1))

using the tower of recollement structure on Bκ
n. Thus

HomBκ
n+k−1

(Δ(λ(1)
min), P (λ(1))) ∼= HomBκ

n+k(Δ(λ(0)
min), P (λ(0))),

and if λ(1)
min is paired we similarly have

HomBκ
n+k−1

(Δ((λ(1)
min)′), P (λ(1))) ∼= HomBκ

n+k
(Δ((λ(0)

min)1), P (λ(0))).

Both of these spaces have dimension at most 1 by Corollary 4.13, which establishes the 
result for λ(1).

If k = 1, then we are done as λ = λ(1). Otherwise let λ(2) = (1λ1 , 1λ2+k−2) ∈
Λ(n + k − 2). Again, there is at least one minimal weight λ(2)

min in the linkage class of 
λ(2) whose classical weight is 1 away from λ(1)

min or (λ(1)
min)′ (if it exists). It is clear that 

prλ(1)(ind Δ(λ(2)
min)) (and prλ(1)(ind Δ((λ(2)

min)′)) if it exists) is a minimal weight Weyl 
module. We also have

prλ(2)(resP (λ(1))) ∼= prλ(2)(F (indP (λ(1))))
∼= F (prλ(2)(indP (λ(1))))

= F (P (1λ1+1, 1λ1+k−1))

= P (λ(2)).
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Thus dim HomBκ
n+k−2

(Δ(λ(2)
min), P (λ(2))) = 1 (and similarly for (λ(2)

min)′ if it exists) and 

the result holds for λ(2). Continuing in this fashion, we obtain the ungraded result for 
λ(k) = λ. The degree of the grade shift follows from the graded decomposition numbers 
of Bκ

n (Theorem 2.8) and Brauer–Humphreys reciprocity. �
5.2. Tilting modules

We are finally in a position to present the main results of this paper.

Theorem 5.4. Let λ ∈ Λ(n) be a maximal weight.

(i) If λmin is unpaired, then T (λ) = P (λmin)〈− deg tλλmin
〉.

(ii) If λmin is paired, then T (λ) is the unique non-split extension

0 → P (λmin)〈− deg tλλmin
〉 → T (λ) → Δ(λ′

min)〈− deg tλλmin
〉 → 0.

Proof. As in the previous theorem we prove the ungraded form of the result first. For 
the first claim, if λmin is unpaired then socP (λmin) = L(λmin) by Theorem 5.3. Thus 
P (λmin) embeds inside I(λmin). But both modules have the same character, so we must 
in fact have P (λmin) = I(λmin) is self-dual and therefore is an indecomposable tilting 
module. By weight considerations it must be a grade shift of T (λ), which we reverse 
using our knowledge of the graded decomposition numbers.

For the second claim, we induct on n. Assume that the indecomposable tilting modules 
in Bκ

m with the same classical weights have the structure above for all m < n. By stability 
of the Weyl filtration multiplicities of tilting modules this implies that in Bκ

n we have

(T (λ) : Δ(μ)) = 1 = (P (λmin) : Δ(μ))

whenever μ ≤ λ and μ �= λmin, λ
′
min. By [5, Lemma A4.1] and its proof P (λmin) embeds 

inside T (λ) and

(T (λ) : Δ(λ′
min)) = dim Ext1Bκ

n
(Δ(λ′

min), P (λmin)),

(T (λ) : Δ(λmin)) = dim Ext1Bκ
n
(Δ(λmin), P (λmin)) + 1.

We will calculate the dimension of the first Ext-group; the second calculation is similar.
Let ΩΔ(λ′

min) be the kernel of the natural map P (λ′
min) → Δ(λ′

min). We have a short 
exact sequence

0 → ΩΔ(λ′
min) → P (λ′

min) → Δ(λ′
min) → 0

which induces a long exact sequence
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0 HomBκ
n
(Δ(λ′

min), P (λmin)) HomBκ
n
(P (λ′

min), P (λmin))

HomBκ
n
(ΩΔ(λ′

min), P (λmin)) Ext1Bκ
n
(Δ(λ′

min), P (λmin))

Ext1Bκ
n
(P (λ′

min), P (λmin)) = 0.

The first term has dimension 1 by Theorem 5.3, while the second term has dimension 
[P (λmin) : L(λ′

min)]. For the third term, we apply [5, Proposition A3.13] several times 
to obtain

HomBκ
n
(ΩΔ(λ′

min), P (λmin)) ∼= HomBκ
n−2r

(F r(ΩΔ(λ′
min)), F rP (λmin))

where r ∈ N is minimal such that F rL(λmin) = F rL(λ′
min) = 0.

Localising does not change the Weyl filtration multiplicities of ΩΔ(λ′
min) because it 

has a Δ-filtration with subquotients labelled by weights larger than λ′
min. This means 

that F r(ΩΔ(λ′
min)) has the same Weyl filtration multiplicities as T (1λ1−r, 1λ2−r) by 

induction, where λ = (1λ1 , 1λ2). Let μ = (1μ1 , 1μ2) ∈ Λ(n) be a weight larger than 
λmin and λ′

min but no other weights, and define μ′ �= μ similarly if such a weight exists. 
Applying [5, Proposition A3.13] again we get

dim HomBκ
n−2r

(Δ(1μ1−r, 1μ2−r), F r(ΩΔ(λ′
min))) =

= dim HomBκ
n−2r

(F rΔ(μ), F r(ΩΔ(λ′
min)))

= dim HomBκ
n
(Δ(μ),ΩΔ(λ′

min))

= 1

and similarly for μ′, so socF r(ΩΔ(λ′
min)) = socT (1λ1−r, 1λ2−r). Another application of 

[5, Lemma A4.1] establishes that F r(ΩΔ(λ′
min)) = T (1λ1−r, 1λ2−r).

On the other hand, from the short exact sequence

0 → ΩΔ(λmin) → P (λmin) → Δ(λmin) → 0

it is clear that F rP (λmin) = F rΩΔ(λmin). As before

F rΩΔ(λmin) = T (1λ1−r, 1λ2−r).

Thus

dim HomBκ
n
(ΩΔ(λ′

min), P (λmin)) = dim EndT (1λ1−r, 1λ2−r),

which by [5, Proposition A2.2(ii)] equals the number of Weyl subquotients in T (1λ1−r,

1λ2−r). But by induction this is just 1 less than the number of Weyl subquotients 
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in P (λmin), which is exactly [P (λmin) : L(λ′
min)]. Thus the relevant Ext-group is 1-

dimensional and the ungraded result follows. The correct grade shift follows from the 
regular graded decomposition numbers. �

To write the other tilting modules, it is useful to introduce some notation due to 
Donkin. For λ ∈ Λ(n) and M a Bκ

n-module, write O≤λ(M) for the maximal submodule 
of M whose composition factors are all of the form L(μ) for some μ ≤ λ. Dually we 
write O≤λ(M) for the minimal submodule of M such that M/O≤λ(M) has composition 
factors of the form L(μ) for some μ ≤ λ.

Theorem 5.5. Let λ, μ ∈ Λ(n) with λ ≤ μ. Then

T (λ) ∼= O≤λ(T (μ))〈− deg tμλ〉.

Proof. First of all, it is clear that O≤λ(T (λmax)) has a ∇-filtration. By [5, Lemma A4.5]
O≤λ(T (λmax)) is the indecomposable tilting module of highest weight λ in the algebra 
Bκ

n(≤ λ) = Bκ
n/O

≤λ(Bκ
n). Using [5, Proposition A3.3] we have

Ext1Bκ
n
(O≤λ(T (λmax)),∇(μ)) = Ext1Bκ

n(≤λ)(O≤λ(T (λmax)),∇(μ)) = 0

for any μ ≤ λ. This means that O≤λ(T (λmax)) has a Δ-filtration too, and thus must 
be a tilting module for Bκ

n. But the socle of O≤λ(T (λmax)) is as small as possible by 
Theorem 5.3, so it must also be indecomposable, and thus O≤λ(T (λmax)) is a grade 
shift of T (λ), and we surmise the correct grade shift from knowledge of the graded 
decomposition numbers. �
Remark 5.6. In Bκ

n(≤ λ) the weight λ is maximal, and the projective modules for are all 
of the form P (μ)/O≤λ(P (μ)) for μ ≤ λ. This suggests a generalization of Theorem 5.4
which gives the structure of T (λ) for arbitrary λ in terms of the analogous Bκ

n(≤ λ)-
modules. Assuming a corresponding socle result like Theorem 5.3 for these modules, the 
same proof passes through essentially unchanged.

5.3. Tilting characters

For x, y ∈ W , define the (Laurent) polynomial hx,y by

hx,y(v) =
{
v�(x)−�(y) if y ≤ x,
0 otherwise.

Our use of a superscript is intentional. We mean to emphasise the fact that these are the 
inverse Kazhdan–Lusztig polynomials associated to W (in the notation of [23]), which 
happen to coincide with ordinary Kazhdan–Lusztig polynomials in type Ã1. The graded 
Weyl filtration multiplicities of the regular indecomposable tilting modules are as follows.
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Corollary 5.7. Let λ, μ be regular weights lying in the same linkage class. Then we have

(T (μ) : Δ(λ))v = hwλ,wμ .

There is also a singular version.

Corollary 5.8. Let λ be a singular weight. Then we have

(T (λk) : Δ(λ))v = v−k.

We conclude with a few remarks on possible extensions of this result.

Remark 5.9.

1. The blob algebra is the quotient of a level 2 cyclotomic Hecke algebra. The generalised 
blob algebras are analogous quasi-hereditary quotients of level l cyclotomic Hecke al-
gebras for integers l > 2. These algebras have a very similar KLR presentation [12]. 
Moreover, the representation theory of the level l generalised blob algebra is governed 
by the combinatorics of one-column l-multipartitions, with a linkage principle com-
ing from the affine Weyl group of type Ãl−1. As a result nearly all of the notation 
generalises to the level l case easily. We conjecture that for two regular one-column 
l-multipartitions λ, μ, we have

(T (μ) : Δ(λ))v = hwλ,wμ

in the level l generalised blob algebra over a field k of characteristic 0, where hx,y is 
the inverse Kazhdan–Lusztig polynomial of type Ãl−1.

2. Over a field k of characteristic p > 0, the graded decomposition numbers of the blob 
algebra coincide with the p-Kazhdan–Lusztig polynomials phy,x of type Ã1 [12, Theo-
rem 5.26] (see also [3]). We hypothesise that the graded Weyl filtration multiplicities 
of the indecomposable tilting modules of the level l generalised blob algebra should 
be given by a p-analogue phx,y of inverse Kazhdan–Lusztig polynomials of type Ãl−1. 
As far as we are aware, no such analogue has been constructed before. In the spheri-
cal l = 2 case, it is reasonable to guess that the graded Weyl filtration multiplicities 
of indecomposable tilting modules for TLn(1) (the n-strand Temperley–Lieb algebra 
with parameter 1 over k) give a p-analogue pmx,y of the inverse spherical Kazhdan–
Lusztig polynomials, truncated after weight n. Equivalently, using the Ringel duality 
of TLn(1) and (a quotient of) the hyperalgebra of SL2, we should have

[ΔSL2(x ·p 0) : LSL2(y ·p 0)] = pmx,y(1),

where ·p denotes the p-dilated dot action. This can be extended to higher levels in 
the spherical case by replacing SL2 with SLl.
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3. In general, p-Kazhdan–Lusztig polynomials are defined via Soergel bimodules over a 
field of characteristic p. The relationship between p-Kazhdan–Lusztig polynomials in 
type Ã1 and graded decomposition numbers of the blob algebra is the combinatorial 
shadow of the ‘Categorical Blob vs Soergel conjecture’ [12, §1.8]. This conjecture posits 
an equivalence between a ‘blob category’ (whose Hom-spaces are certain idempotent 
truncations of the level l generalised blob algebra) and the category of Soergel bimod-
ules in type Ãl−1. Such an equivalence, combined with our tilting character conjecture 
above, would imply that the inverse (p-)Kazhdan–Lusztig polynomials of type Ãl−1
appear in the corresponding category of Soergel bimodules. Yet Soergel bimodules 
make sense for all types, so this would lead to a categorification (resp. construction) 
of inverse (p-)Kazhdan–Lusztig polynomials in all types. The classical relationship be-
tween Kazhdan–Lusztig polynomials and inverse Kazhdan–Lusztig polynomials could 
then be reinterpreted as saying something about a form of ‘Ringel duality’ for Soergel 
bimodules.
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